Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  affinecomb2 Structured version   Visualization version   GIF version

Theorem affinecomb2 44739
Description: Combination of two real affine combinations, presented without fraction. (Contributed by AV, 22-Jan-2023.)
Hypotheses
Ref Expression
affinecomb1.a (𝜑𝐴 ∈ ℝ)
affinecomb1.b (𝜑𝐵 ∈ ℝ)
affinecomb1.c (𝜑𝐶 ∈ ℝ)
affinecomb1.d (𝜑𝐵𝐶)
affinecomb1.e (𝜑𝐸 ∈ ℝ)
affinecomb1.f (𝜑𝐹 ∈ ℝ)
affinecomb1.g (𝜑𝐺 ∈ ℝ)
Assertion
Ref Expression
affinecomb2 (𝜑 → (∃𝑡 ∈ ℝ (𝐴 = (((1 − 𝑡) · 𝐵) + (𝑡 · 𝐶)) ∧ 𝐸 = (((1 − 𝑡) · 𝐹) + (𝑡 · 𝐺))) ↔ ((𝐶𝐵) · 𝐸) = (((𝐺𝐹) · 𝐴) + ((𝐹 · 𝐶) − (𝐵 · 𝐺)))))
Distinct variable groups:   𝑡,𝐴   𝑡,𝐵   𝑡,𝐶   𝑡,𝐸   𝑡,𝐹   𝜑,𝑡   𝑡,𝐺

Proof of Theorem affinecomb2
StepHypRef Expression
1 affinecomb1.a . . 3 (𝜑𝐴 ∈ ℝ)
2 affinecomb1.b . . 3 (𝜑𝐵 ∈ ℝ)
3 affinecomb1.c . . 3 (𝜑𝐶 ∈ ℝ)
4 affinecomb1.d . . 3 (𝜑𝐵𝐶)
5 affinecomb1.e . . 3 (𝜑𝐸 ∈ ℝ)
6 affinecomb1.f . . 3 (𝜑𝐹 ∈ ℝ)
7 affinecomb1.g . . 3 (𝜑𝐺 ∈ ℝ)
8 eqid 2821 . . 3 ((𝐺𝐹) / (𝐶𝐵)) = ((𝐺𝐹) / (𝐶𝐵))
91, 2, 3, 4, 5, 6, 7, 8affinecomb1 44738 . 2 (𝜑 → (∃𝑡 ∈ ℝ (𝐴 = (((1 − 𝑡) · 𝐵) + (𝑡 · 𝐶)) ∧ 𝐸 = (((1 − 𝑡) · 𝐹) + (𝑡 · 𝐺))) ↔ 𝐸 = ((((𝐺𝐹) / (𝐶𝐵)) · (𝐴𝐵)) + 𝐹)))
105recnd 10669 . . 3 (𝜑𝐸 ∈ ℂ)
117recnd 10669 . . . . . . 7 (𝜑𝐺 ∈ ℂ)
126recnd 10669 . . . . . . 7 (𝜑𝐹 ∈ ℂ)
1311, 12subcld 10997 . . . . . 6 (𝜑 → (𝐺𝐹) ∈ ℂ)
143recnd 10669 . . . . . . 7 (𝜑𝐶 ∈ ℂ)
152recnd 10669 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
1614, 15subcld 10997 . . . . . 6 (𝜑 → (𝐶𝐵) ∈ ℂ)
174necomd 3071 . . . . . . 7 (𝜑𝐶𝐵)
1814, 15, 17subne0d 11006 . . . . . 6 (𝜑 → (𝐶𝐵) ≠ 0)
1913, 16, 18divcld 11416 . . . . 5 (𝜑 → ((𝐺𝐹) / (𝐶𝐵)) ∈ ℂ)
201recnd 10669 . . . . . 6 (𝜑𝐴 ∈ ℂ)
2120, 15subcld 10997 . . . . 5 (𝜑 → (𝐴𝐵) ∈ ℂ)
2219, 21mulcld 10661 . . . 4 (𝜑 → (((𝐺𝐹) / (𝐶𝐵)) · (𝐴𝐵)) ∈ ℂ)
2322, 12addcld 10660 . . 3 (𝜑 → ((((𝐺𝐹) / (𝐶𝐵)) · (𝐴𝐵)) + 𝐹) ∈ ℂ)
2410, 23, 16, 18mulcand 11273 . 2 (𝜑 → (((𝐶𝐵) · 𝐸) = ((𝐶𝐵) · ((((𝐺𝐹) / (𝐶𝐵)) · (𝐴𝐵)) + 𝐹)) ↔ 𝐸 = ((((𝐺𝐹) / (𝐶𝐵)) · (𝐴𝐵)) + 𝐹)))
2516, 22, 12adddid 10665 . . . 4 (𝜑 → ((𝐶𝐵) · ((((𝐺𝐹) / (𝐶𝐵)) · (𝐴𝐵)) + 𝐹)) = (((𝐶𝐵) · (((𝐺𝐹) / (𝐶𝐵)) · (𝐴𝐵))) + ((𝐶𝐵) · 𝐹)))
2613, 16, 18divcan2d 11418 . . . . . . . 8 (𝜑 → ((𝐶𝐵) · ((𝐺𝐹) / (𝐶𝐵))) = (𝐺𝐹))
2726oveq1d 7171 . . . . . . 7 (𝜑 → (((𝐶𝐵) · ((𝐺𝐹) / (𝐶𝐵))) · (𝐴𝐵)) = ((𝐺𝐹) · (𝐴𝐵)))
2816, 19, 21mulassd 10664 . . . . . . 7 (𝜑 → (((𝐶𝐵) · ((𝐺𝐹) / (𝐶𝐵))) · (𝐴𝐵)) = ((𝐶𝐵) · (((𝐺𝐹) / (𝐶𝐵)) · (𝐴𝐵))))
2913, 20, 15subdid 11096 . . . . . . 7 (𝜑 → ((𝐺𝐹) · (𝐴𝐵)) = (((𝐺𝐹) · 𝐴) − ((𝐺𝐹) · 𝐵)))
3027, 28, 293eqtr3d 2864 . . . . . 6 (𝜑 → ((𝐶𝐵) · (((𝐺𝐹) / (𝐶𝐵)) · (𝐴𝐵))) = (((𝐺𝐹) · 𝐴) − ((𝐺𝐹) · 𝐵)))
3114, 15, 12subdird 11097 . . . . . 6 (𝜑 → ((𝐶𝐵) · 𝐹) = ((𝐶 · 𝐹) − (𝐵 · 𝐹)))
3230, 31oveq12d 7174 . . . . 5 (𝜑 → (((𝐶𝐵) · (((𝐺𝐹) / (𝐶𝐵)) · (𝐴𝐵))) + ((𝐶𝐵) · 𝐹)) = ((((𝐺𝐹) · 𝐴) − ((𝐺𝐹) · 𝐵)) + ((𝐶 · 𝐹) − (𝐵 · 𝐹))))
3313, 20mulcld 10661 . . . . . 6 (𝜑 → ((𝐺𝐹) · 𝐴) ∈ ℂ)
3413, 15mulcld 10661 . . . . . 6 (𝜑 → ((𝐺𝐹) · 𝐵) ∈ ℂ)
3514, 12mulcld 10661 . . . . . . 7 (𝜑 → (𝐶 · 𝐹) ∈ ℂ)
3615, 12mulcld 10661 . . . . . . 7 (𝜑 → (𝐵 · 𝐹) ∈ ℂ)
3735, 36subcld 10997 . . . . . 6 (𝜑 → ((𝐶 · 𝐹) − (𝐵 · 𝐹)) ∈ ℂ)
3833, 34, 37subadd23d 11019 . . . . 5 (𝜑 → ((((𝐺𝐹) · 𝐴) − ((𝐺𝐹) · 𝐵)) + ((𝐶 · 𝐹) − (𝐵 · 𝐹))) = (((𝐺𝐹) · 𝐴) + (((𝐶 · 𝐹) − (𝐵 · 𝐹)) − ((𝐺𝐹) · 𝐵))))
3932, 38eqtrd 2856 . . . 4 (𝜑 → (((𝐶𝐵) · (((𝐺𝐹) / (𝐶𝐵)) · (𝐴𝐵))) + ((𝐶𝐵) · 𝐹)) = (((𝐺𝐹) · 𝐴) + (((𝐶 · 𝐹) − (𝐵 · 𝐹)) − ((𝐺𝐹) · 𝐵))))
4014, 12mulcomd 10662 . . . . . . . 8 (𝜑 → (𝐶 · 𝐹) = (𝐹 · 𝐶))
4115, 12mulcomd 10662 . . . . . . . 8 (𝜑 → (𝐵 · 𝐹) = (𝐹 · 𝐵))
4240, 41oveq12d 7174 . . . . . . 7 (𝜑 → ((𝐶 · 𝐹) − (𝐵 · 𝐹)) = ((𝐹 · 𝐶) − (𝐹 · 𝐵)))
4311, 12, 15subdird 11097 . . . . . . 7 (𝜑 → ((𝐺𝐹) · 𝐵) = ((𝐺 · 𝐵) − (𝐹 · 𝐵)))
4442, 43oveq12d 7174 . . . . . 6 (𝜑 → (((𝐶 · 𝐹) − (𝐵 · 𝐹)) − ((𝐺𝐹) · 𝐵)) = (((𝐹 · 𝐶) − (𝐹 · 𝐵)) − ((𝐺 · 𝐵) − (𝐹 · 𝐵))))
4512, 14mulcld 10661 . . . . . . 7 (𝜑 → (𝐹 · 𝐶) ∈ ℂ)
4611, 15mulcld 10661 . . . . . . 7 (𝜑 → (𝐺 · 𝐵) ∈ ℂ)
4712, 15mulcld 10661 . . . . . . 7 (𝜑 → (𝐹 · 𝐵) ∈ ℂ)
4845, 46, 47nnncan2d 11032 . . . . . 6 (𝜑 → (((𝐹 · 𝐶) − (𝐹 · 𝐵)) − ((𝐺 · 𝐵) − (𝐹 · 𝐵))) = ((𝐹 · 𝐶) − (𝐺 · 𝐵)))
4911, 15mulcomd 10662 . . . . . . 7 (𝜑 → (𝐺 · 𝐵) = (𝐵 · 𝐺))
5049oveq2d 7172 . . . . . 6 (𝜑 → ((𝐹 · 𝐶) − (𝐺 · 𝐵)) = ((𝐹 · 𝐶) − (𝐵 · 𝐺)))
5144, 48, 503eqtrd 2860 . . . . 5 (𝜑 → (((𝐶 · 𝐹) − (𝐵 · 𝐹)) − ((𝐺𝐹) · 𝐵)) = ((𝐹 · 𝐶) − (𝐵 · 𝐺)))
5251oveq2d 7172 . . . 4 (𝜑 → (((𝐺𝐹) · 𝐴) + (((𝐶 · 𝐹) − (𝐵 · 𝐹)) − ((𝐺𝐹) · 𝐵))) = (((𝐺𝐹) · 𝐴) + ((𝐹 · 𝐶) − (𝐵 · 𝐺))))
5325, 39, 523eqtrd 2860 . . 3 (𝜑 → ((𝐶𝐵) · ((((𝐺𝐹) / (𝐶𝐵)) · (𝐴𝐵)) + 𝐹)) = (((𝐺𝐹) · 𝐴) + ((𝐹 · 𝐶) − (𝐵 · 𝐺))))
5453eqeq2d 2832 . 2 (𝜑 → (((𝐶𝐵) · 𝐸) = ((𝐶𝐵) · ((((𝐺𝐹) / (𝐶𝐵)) · (𝐴𝐵)) + 𝐹)) ↔ ((𝐶𝐵) · 𝐸) = (((𝐺𝐹) · 𝐴) + ((𝐹 · 𝐶) − (𝐵 · 𝐺)))))
559, 24, 543bitr2d 309 1 (𝜑 → (∃𝑡 ∈ ℝ (𝐴 = (((1 − 𝑡) · 𝐵) + (𝑡 · 𝐶)) ∧ 𝐸 = (((1 − 𝑡) · 𝐹) + (𝑡 · 𝐺))) ↔ ((𝐶𝐵) · 𝐸) = (((𝐺𝐹) · 𝐴) + ((𝐹 · 𝐶) − (𝐵 · 𝐺)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3016  wrex 3139  (class class class)co 7156  cr 10536  1c1 10538   + caddc 10540   · cmul 10542  cmin 10870   / cdiv 11297
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-po 5474  df-so 5475  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298
This theorem is referenced by:  rrx2linest  44778
  Copyright terms: Public domain W3C validator