Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrx2linest Structured version   Visualization version   GIF version

Theorem rrx2linest 44778
Description: The line passing through the two different points 𝑋 and 𝑌 in a real Euclidean space of dimension 2 in "standard form". (Contributed by AV, 2-Feb-2023.)
Hypotheses
Ref Expression
rrx2line.i 𝐼 = {1, 2}
rrx2line.e 𝐸 = (ℝ^‘𝐼)
rrx2line.b 𝑃 = (ℝ ↑m 𝐼)
rrx2line.l 𝐿 = (LineM𝐸)
rrx2linest.a 𝐴 = ((𝑌‘1) − (𝑋‘1))
rrx2linest.b 𝐵 = ((𝑌‘2) − (𝑋‘2))
rrx2linest.c 𝐶 = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))
Assertion
Ref Expression
rrx2linest ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ (𝐴 · (𝑝‘2)) = ((𝐵 · (𝑝‘1)) + 𝐶)})
Distinct variable groups:   𝐸,𝑝   𝐼,𝑝   𝑃,𝑝   𝑋,𝑝   𝑌,𝑝
Allowed substitution hints:   𝐴(𝑝)   𝐵(𝑝)   𝐶(𝑝)   𝐿(𝑝)

Proof of Theorem rrx2linest
Dummy variables 𝑖 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl1 1187 . . . 4 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑋‘1) = (𝑌‘1)) → 𝑋𝑃)
2 simpl2 1188 . . . 4 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑋‘1) = (𝑌‘1)) → 𝑌𝑃)
3 simpr 487 . . . 4 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑋‘1) = (𝑌‘1)) → (𝑋‘1) = (𝑌‘1))
4 simpr 487 . . . . . . . . . . . . 13 (((𝑋𝑃𝑌𝑃) ∧ (𝑋‘1) = (𝑌‘1)) → (𝑋‘1) = (𝑌‘1))
54anim1i 616 . . . . . . . . . . . 12 ((((𝑋𝑃𝑌𝑃) ∧ (𝑋‘1) = (𝑌‘1)) ∧ (𝑋‘2) = (𝑌‘2)) → ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) = (𝑌‘2)))
6 rrx2line.i . . . . . . . . . . . . . 14 𝐼 = {1, 2}
76raleqi 3413 . . . . . . . . . . . . 13 (∀𝑖𝐼 (𝑋𝑖) = (𝑌𝑖) ↔ ∀𝑖 ∈ {1, 2} (𝑋𝑖) = (𝑌𝑖))
8 1ex 10637 . . . . . . . . . . . . . 14 1 ∈ V
9 2ex 11715 . . . . . . . . . . . . . 14 2 ∈ V
10 fveq2 6670 . . . . . . . . . . . . . . 15 (𝑖 = 1 → (𝑋𝑖) = (𝑋‘1))
11 fveq2 6670 . . . . . . . . . . . . . . 15 (𝑖 = 1 → (𝑌𝑖) = (𝑌‘1))
1210, 11eqeq12d 2837 . . . . . . . . . . . . . 14 (𝑖 = 1 → ((𝑋𝑖) = (𝑌𝑖) ↔ (𝑋‘1) = (𝑌‘1)))
13 fveq2 6670 . . . . . . . . . . . . . . 15 (𝑖 = 2 → (𝑋𝑖) = (𝑋‘2))
14 fveq2 6670 . . . . . . . . . . . . . . 15 (𝑖 = 2 → (𝑌𝑖) = (𝑌‘2))
1513, 14eqeq12d 2837 . . . . . . . . . . . . . 14 (𝑖 = 2 → ((𝑋𝑖) = (𝑌𝑖) ↔ (𝑋‘2) = (𝑌‘2)))
168, 9, 12, 15ralpr 4636 . . . . . . . . . . . . 13 (∀𝑖 ∈ {1, 2} (𝑋𝑖) = (𝑌𝑖) ↔ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) = (𝑌‘2)))
177, 16bitri 277 . . . . . . . . . . . 12 (∀𝑖𝐼 (𝑋𝑖) = (𝑌𝑖) ↔ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) = (𝑌‘2)))
185, 17sylibr 236 . . . . . . . . . . 11 ((((𝑋𝑃𝑌𝑃) ∧ (𝑋‘1) = (𝑌‘1)) ∧ (𝑋‘2) = (𝑌‘2)) → ∀𝑖𝐼 (𝑋𝑖) = (𝑌𝑖))
19 elmapfn 8429 . . . . . . . . . . . . . . 15 (𝑋 ∈ (ℝ ↑m 𝐼) → 𝑋 Fn 𝐼)
20 rrx2line.b . . . . . . . . . . . . . . 15 𝑃 = (ℝ ↑m 𝐼)
2119, 20eleq2s 2931 . . . . . . . . . . . . . 14 (𝑋𝑃𝑋 Fn 𝐼)
22 elmapfn 8429 . . . . . . . . . . . . . . 15 (𝑌 ∈ (ℝ ↑m 𝐼) → 𝑌 Fn 𝐼)
2322, 20eleq2s 2931 . . . . . . . . . . . . . 14 (𝑌𝑃𝑌 Fn 𝐼)
2421, 23anim12i 614 . . . . . . . . . . . . 13 ((𝑋𝑃𝑌𝑃) → (𝑋 Fn 𝐼𝑌 Fn 𝐼))
2524ad2antrr 724 . . . . . . . . . . . 12 ((((𝑋𝑃𝑌𝑃) ∧ (𝑋‘1) = (𝑌‘1)) ∧ (𝑋‘2) = (𝑌‘2)) → (𝑋 Fn 𝐼𝑌 Fn 𝐼))
26 eqfnfv 6802 . . . . . . . . . . . 12 ((𝑋 Fn 𝐼𝑌 Fn 𝐼) → (𝑋 = 𝑌 ↔ ∀𝑖𝐼 (𝑋𝑖) = (𝑌𝑖)))
2725, 26syl 17 . . . . . . . . . . 11 ((((𝑋𝑃𝑌𝑃) ∧ (𝑋‘1) = (𝑌‘1)) ∧ (𝑋‘2) = (𝑌‘2)) → (𝑋 = 𝑌 ↔ ∀𝑖𝐼 (𝑋𝑖) = (𝑌𝑖)))
2818, 27mpbird 259 . . . . . . . . . 10 ((((𝑋𝑃𝑌𝑃) ∧ (𝑋‘1) = (𝑌‘1)) ∧ (𝑋‘2) = (𝑌‘2)) → 𝑋 = 𝑌)
2928ex 415 . . . . . . . . 9 (((𝑋𝑃𝑌𝑃) ∧ (𝑋‘1) = (𝑌‘1)) → ((𝑋‘2) = (𝑌‘2) → 𝑋 = 𝑌))
3029necon3d 3037 . . . . . . . 8 (((𝑋𝑃𝑌𝑃) ∧ (𝑋‘1) = (𝑌‘1)) → (𝑋𝑌 → (𝑋‘2) ≠ (𝑌‘2)))
3130ex 415 . . . . . . 7 ((𝑋𝑃𝑌𝑃) → ((𝑋‘1) = (𝑌‘1) → (𝑋𝑌 → (𝑋‘2) ≠ (𝑌‘2))))
3231com23 86 . . . . . 6 ((𝑋𝑃𝑌𝑃) → (𝑋𝑌 → ((𝑋‘1) = (𝑌‘1) → (𝑋‘2) ≠ (𝑌‘2))))
33323impia 1113 . . . . 5 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ((𝑋‘1) = (𝑌‘1) → (𝑋‘2) ≠ (𝑌‘2)))
3433imp 409 . . . 4 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑋‘1) = (𝑌‘1)) → (𝑋‘2) ≠ (𝑌‘2))
35 rrx2line.e . . . . 5 𝐸 = (ℝ^‘𝐼)
36 rrx2line.l . . . . 5 𝐿 = (LineM𝐸)
376, 35, 20, 36rrx2vlinest 44777 . . . 4 ((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ (𝑝‘1) = (𝑋‘1)})
381, 2, 3, 34, 37syl112anc 1370 . . 3 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑋‘1) = (𝑌‘1)) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ (𝑝‘1) = (𝑋‘1)})
39 ancom 463 . . . 4 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑋‘1) = (𝑌‘1)) ↔ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)))
40 simplr 767 . . . . . . 7 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → (𝑋𝑃𝑌𝑃𝑋𝑌))
41 simpr 487 . . . . . . 7 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → 𝑝𝑃)
42 simpll 765 . . . . . . 7 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → (𝑋‘1) = (𝑌‘1))
43 rrx2linest.a . . . . . . . . . . 11 𝐴 = ((𝑌‘1) − (𝑋‘1))
4443oveq1i 7166 . . . . . . . . . 10 (𝐴 · (𝑝‘2)) = (((𝑌‘1) − (𝑋‘1)) · (𝑝‘2))
4544a1i 11 . . . . . . . . 9 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) = (𝑌‘1)) → (𝐴 · (𝑝‘2)) = (((𝑌‘1) − (𝑋‘1)) · (𝑝‘2)))
46 oveq2 7164 . . . . . . . . . . . 12 ((𝑋‘1) = (𝑌‘1) → ((𝑌‘1) − (𝑋‘1)) = ((𝑌‘1) − (𝑌‘1)))
4746adantl 484 . . . . . . . . . . 11 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) = (𝑌‘1)) → ((𝑌‘1) − (𝑋‘1)) = ((𝑌‘1) − (𝑌‘1)))
486, 20rrx2pxel 44747 . . . . . . . . . . . . . . 15 (𝑌𝑃 → (𝑌‘1) ∈ ℝ)
4948recnd 10669 . . . . . . . . . . . . . 14 (𝑌𝑃 → (𝑌‘1) ∈ ℂ)
50493ad2ant2 1130 . . . . . . . . . . . . 13 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑌‘1) ∈ ℂ)
5150ad2antrr 724 . . . . . . . . . . . 12 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) = (𝑌‘1)) → (𝑌‘1) ∈ ℂ)
5251subidd 10985 . . . . . . . . . . 11 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) = (𝑌‘1)) → ((𝑌‘1) − (𝑌‘1)) = 0)
5347, 52eqtrd 2856 . . . . . . . . . 10 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) = (𝑌‘1)) → ((𝑌‘1) − (𝑋‘1)) = 0)
5453oveq1d 7171 . . . . . . . . 9 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) = (𝑌‘1)) → (((𝑌‘1) − (𝑋‘1)) · (𝑝‘2)) = (0 · (𝑝‘2)))
556, 20rrx2pyel 44748 . . . . . . . . . . . 12 (𝑝𝑃 → (𝑝‘2) ∈ ℝ)
5655recnd 10669 . . . . . . . . . . 11 (𝑝𝑃 → (𝑝‘2) ∈ ℂ)
5756ad2antlr 725 . . . . . . . . . 10 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) = (𝑌‘1)) → (𝑝‘2) ∈ ℂ)
5857mul02d 10838 . . . . . . . . 9 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) = (𝑌‘1)) → (0 · (𝑝‘2)) = 0)
5945, 54, 583eqtrd 2860 . . . . . . . 8 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) = (𝑌‘1)) → (𝐴 · (𝑝‘2)) = 0)
60 rrx2linest.b . . . . . . . . . . 11 𝐵 = ((𝑌‘2) − (𝑋‘2))
6160oveq1i 7166 . . . . . . . . . 10 (𝐵 · (𝑝‘1)) = (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1))
6261a1i 11 . . . . . . . . 9 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) = (𝑌‘1)) → (𝐵 · (𝑝‘1)) = (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)))
63 rrx2linest.c . . . . . . . . . . 11 𝐶 = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))
64 oveq1 7163 . . . . . . . . . . . 12 ((𝑋‘1) = (𝑌‘1) → ((𝑋‘1) · (𝑌‘2)) = ((𝑌‘1) · (𝑌‘2)))
6564oveq2d 7172 . . . . . . . . . . 11 ((𝑋‘1) = (𝑌‘1) → (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))) = (((𝑋‘2) · (𝑌‘1)) − ((𝑌‘1) · (𝑌‘2))))
6663, 65syl5eq 2868 . . . . . . . . . 10 ((𝑋‘1) = (𝑌‘1) → 𝐶 = (((𝑋‘2) · (𝑌‘1)) − ((𝑌‘1) · (𝑌‘2))))
6766adantl 484 . . . . . . . . 9 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) = (𝑌‘1)) → 𝐶 = (((𝑋‘2) · (𝑌‘1)) − ((𝑌‘1) · (𝑌‘2))))
6862, 67oveq12d 7174 . . . . . . . 8 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) = (𝑌‘1)) → ((𝐵 · (𝑝‘1)) + 𝐶) = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) · (𝑌‘1)) − ((𝑌‘1) · (𝑌‘2)))))
6959, 68eqeq12d 2837 . . . . . . 7 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) = (𝑌‘1)) → ((𝐴 · (𝑝‘2)) = ((𝐵 · (𝑝‘1)) + 𝐶) ↔ 0 = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) · (𝑌‘1)) − ((𝑌‘1) · (𝑌‘2))))))
7040, 41, 42, 69syl21anc 835 . . . . . 6 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → ((𝐴 · (𝑝‘2)) = ((𝐵 · (𝑝‘1)) + 𝐶) ↔ 0 = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) · (𝑌‘1)) − ((𝑌‘1) · (𝑌‘2))))))
716, 20rrx2pyel 44748 . . . . . . . . . . . . . . 15 (𝑌𝑃 → (𝑌‘2) ∈ ℝ)
7271recnd 10669 . . . . . . . . . . . . . 14 (𝑌𝑃 → (𝑌‘2) ∈ ℂ)
73723ad2ant2 1130 . . . . . . . . . . . . 13 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑌‘2) ∈ ℂ)
7450, 73mulcomd 10662 . . . . . . . . . . . 12 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ((𝑌‘1) · (𝑌‘2)) = ((𝑌‘2) · (𝑌‘1)))
7574oveq2d 7172 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (((𝑋‘2) · (𝑌‘1)) − ((𝑌‘1) · (𝑌‘2))) = (((𝑋‘2) · (𝑌‘1)) − ((𝑌‘2) · (𝑌‘1))))
766, 20rrx2pyel 44748 . . . . . . . . . . . . . 14 (𝑋𝑃 → (𝑋‘2) ∈ ℝ)
7776recnd 10669 . . . . . . . . . . . . 13 (𝑋𝑃 → (𝑋‘2) ∈ ℂ)
78773ad2ant1 1129 . . . . . . . . . . . 12 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋‘2) ∈ ℂ)
7978, 73, 50subdird 11097 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (((𝑋‘2) − (𝑌‘2)) · (𝑌‘1)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑌‘2) · (𝑌‘1))))
8075, 79eqtr4d 2859 . . . . . . . . . 10 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (((𝑋‘2) · (𝑌‘1)) − ((𝑌‘1) · (𝑌‘2))) = (((𝑋‘2) − (𝑌‘2)) · (𝑌‘1)))
8180ad2antlr 725 . . . . . . . . 9 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → (((𝑋‘2) · (𝑌‘1)) − ((𝑌‘1) · (𝑌‘2))) = (((𝑋‘2) − (𝑌‘2)) · (𝑌‘1)))
8281oveq2d 7172 . . . . . . . 8 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) · (𝑌‘1)) − ((𝑌‘1) · (𝑌‘2)))) = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) − (𝑌‘2)) · (𝑌‘1))))
8382eqeq2d 2832 . . . . . . 7 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → (0 = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) · (𝑌‘1)) − ((𝑌‘1) · (𝑌‘2)))) ↔ 0 = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) − (𝑌‘2)) · (𝑌‘1)))))
84 eqcom 2828 . . . . . . . . 9 (0 = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) − (𝑌‘2)) · (𝑌‘1))) ↔ ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) − (𝑌‘2)) · (𝑌‘1))) = 0)
8584a1i 11 . . . . . . . 8 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → (0 = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) − (𝑌‘2)) · (𝑌‘1))) ↔ ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) − (𝑌‘2)) · (𝑌‘1))) = 0))
8673ad2antlr 725 . . . . . . . . . . 11 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → (𝑌‘2) ∈ ℂ)
8778ad2antlr 725 . . . . . . . . . . 11 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → (𝑋‘2) ∈ ℂ)
8886, 87subcld 10997 . . . . . . . . . 10 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → ((𝑌‘2) − (𝑋‘2)) ∈ ℂ)
896, 20rrx2pxel 44747 . . . . . . . . . . . 12 (𝑝𝑃 → (𝑝‘1) ∈ ℝ)
9089recnd 10669 . . . . . . . . . . 11 (𝑝𝑃 → (𝑝‘1) ∈ ℂ)
9190adantl 484 . . . . . . . . . 10 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → (𝑝‘1) ∈ ℂ)
9288, 91mulcld 10661 . . . . . . . . 9 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) ∈ ℂ)
9387, 86subcld 10997 . . . . . . . . . 10 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → ((𝑋‘2) − (𝑌‘2)) ∈ ℂ)
9450ad2antlr 725 . . . . . . . . . 10 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → (𝑌‘1) ∈ ℂ)
9593, 94mulcld 10661 . . . . . . . . 9 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → (((𝑋‘2) − (𝑌‘2)) · (𝑌‘1)) ∈ ℂ)
96 addeq0 11063 . . . . . . . . 9 (((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) ∈ ℂ ∧ (((𝑋‘2) − (𝑌‘2)) · (𝑌‘1)) ∈ ℂ) → (((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) − (𝑌‘2)) · (𝑌‘1))) = 0 ↔ (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) = -(((𝑋‘2) − (𝑌‘2)) · (𝑌‘1))))
9792, 95, 96syl2anc 586 . . . . . . . 8 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → (((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) − (𝑌‘2)) · (𝑌‘1))) = 0 ↔ (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) = -(((𝑋‘2) − (𝑌‘2)) · (𝑌‘1))))
9893, 94mulneg1d 11093 . . . . . . . . . . 11 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → (-((𝑋‘2) − (𝑌‘2)) · (𝑌‘1)) = -(((𝑋‘2) − (𝑌‘2)) · (𝑌‘1)))
9987, 86negsubdi2d 11013 . . . . . . . . . . . 12 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → -((𝑋‘2) − (𝑌‘2)) = ((𝑌‘2) − (𝑋‘2)))
10099oveq1d 7171 . . . . . . . . . . 11 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → (-((𝑋‘2) − (𝑌‘2)) · (𝑌‘1)) = (((𝑌‘2) − (𝑋‘2)) · (𝑌‘1)))
10198, 100eqtr3d 2858 . . . . . . . . . 10 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → -(((𝑋‘2) − (𝑌‘2)) · (𝑌‘1)) = (((𝑌‘2) − (𝑋‘2)) · (𝑌‘1)))
102101eqeq2d 2832 . . . . . . . . 9 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) = -(((𝑋‘2) − (𝑌‘2)) · (𝑌‘1)) ↔ (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) = (((𝑌‘2) − (𝑋‘2)) · (𝑌‘1))))
103 necom 3069 . . . . . . . . . . . . 13 ((𝑋‘2) ≠ (𝑌‘2) ↔ (𝑌‘2) ≠ (𝑋‘2))
10434, 39, 1033imtr3i 293 . . . . . . . . . . . 12 (((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) → (𝑌‘2) ≠ (𝑋‘2))
105104adantr 483 . . . . . . . . . . 11 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → (𝑌‘2) ≠ (𝑋‘2))
10686, 87, 105subne0d 11006 . . . . . . . . . 10 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → ((𝑌‘2) − (𝑋‘2)) ≠ 0)
10791, 94, 88, 106mulcand 11273 . . . . . . . . 9 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) = (((𝑌‘2) − (𝑋‘2)) · (𝑌‘1)) ↔ (𝑝‘1) = (𝑌‘1)))
108102, 107bitrd 281 . . . . . . . 8 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) = -(((𝑋‘2) − (𝑌‘2)) · (𝑌‘1)) ↔ (𝑝‘1) = (𝑌‘1)))
10985, 97, 1083bitrd 307 . . . . . . 7 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → (0 = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) − (𝑌‘2)) · (𝑌‘1))) ↔ (𝑝‘1) = (𝑌‘1)))
11083, 109bitrd 281 . . . . . 6 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → (0 = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) · (𝑌‘1)) − ((𝑌‘1) · (𝑌‘2)))) ↔ (𝑝‘1) = (𝑌‘1)))
111 simpl 485 . . . . . . . . 9 (((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) → (𝑋‘1) = (𝑌‘1))
112111eqcomd 2827 . . . . . . . 8 (((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) → (𝑌‘1) = (𝑋‘1))
113112adantr 483 . . . . . . 7 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → (𝑌‘1) = (𝑋‘1))
114113eqeq2d 2832 . . . . . 6 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → ((𝑝‘1) = (𝑌‘1) ↔ (𝑝‘1) = (𝑋‘1)))
11570, 110, 1143bitrrd 308 . . . . 5 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → ((𝑝‘1) = (𝑋‘1) ↔ (𝐴 · (𝑝‘2)) = ((𝐵 · (𝑝‘1)) + 𝐶)))
116115rabbidva 3478 . . . 4 (((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) → {𝑝𝑃 ∣ (𝑝‘1) = (𝑋‘1)} = {𝑝𝑃 ∣ (𝐴 · (𝑝‘2)) = ((𝐵 · (𝑝‘1)) + 𝐶)})
11739, 116sylbi 219 . . 3 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑋‘1) = (𝑌‘1)) → {𝑝𝑃 ∣ (𝑝‘1) = (𝑋‘1)} = {𝑝𝑃 ∣ (𝐴 · (𝑝‘2)) = ((𝐵 · (𝑝‘1)) + 𝐶)})
11838, 117eqtrd 2856 . 2 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑋‘1) = (𝑌‘1)) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ (𝐴 · (𝑝‘2)) = ((𝐵 · (𝑝‘1)) + 𝐶)})
1196, 35, 20, 36rrx2line 44776 . . . 4 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))})
120119adantr 483 . . 3 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ ¬ (𝑋‘1) = (𝑌‘1)) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))})
121 df-ne 3017 . . . . . . . 8 ((𝑋‘1) ≠ (𝑌‘1) ↔ ¬ (𝑋‘1) = (𝑌‘1))
12289ad2antlr 725 . . . . . . . . . . 11 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑝‘1) ∈ ℝ)
1236, 20rrx2pxel 44747 . . . . . . . . . . . . 13 (𝑋𝑃 → (𝑋‘1) ∈ ℝ)
1241233ad2ant1 1129 . . . . . . . . . . . 12 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋‘1) ∈ ℝ)
125124ad2antrr 724 . . . . . . . . . . 11 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑋‘1) ∈ ℝ)
126483ad2ant2 1130 . . . . . . . . . . . 12 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑌‘1) ∈ ℝ)
127126ad2antrr 724 . . . . . . . . . . 11 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑌‘1) ∈ ℝ)
128 simpr 487 . . . . . . . . . . 11 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑋‘1) ≠ (𝑌‘1))
12955ad2antlr 725 . . . . . . . . . . 11 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑝‘2) ∈ ℝ)
130763ad2ant1 1129 . . . . . . . . . . . 12 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋‘2) ∈ ℝ)
131130ad2antrr 724 . . . . . . . . . . 11 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑋‘2) ∈ ℝ)
132713ad2ant2 1130 . . . . . . . . . . . 12 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑌‘2) ∈ ℝ)
133132ad2antrr 724 . . . . . . . . . . 11 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑌‘2) ∈ ℝ)
134122, 125, 127, 128, 129, 131, 133affinecomb2 44739 . . . . . . . . . 10 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) ≠ (𝑌‘1)) → (∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))) ↔ (((𝑌‘1) − (𝑋‘1)) · (𝑝‘2)) = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))))
13543eqcomi 2830 . . . . . . . . . . . 12 ((𝑌‘1) − (𝑋‘1)) = 𝐴
136135oveq1i 7166 . . . . . . . . . . 11 (((𝑌‘1) − (𝑋‘1)) · (𝑝‘2)) = (𝐴 · (𝑝‘2))
13760eqcomi 2830 . . . . . . . . . . . . 13 ((𝑌‘2) − (𝑋‘2)) = 𝐵
138137oveq1i 7166 . . . . . . . . . . . 12 (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) = (𝐵 · (𝑝‘1))
13963eqcomi 2830 . . . . . . . . . . . 12 (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))) = 𝐶
140138, 139oveq12i 7168 . . . . . . . . . . 11 ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))) = ((𝐵 · (𝑝‘1)) + 𝐶)
141136, 140eqeq12i 2836 . . . . . . . . . 10 ((((𝑌‘1) − (𝑋‘1)) · (𝑝‘2)) = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))) ↔ (𝐴 · (𝑝‘2)) = ((𝐵 · (𝑝‘1)) + 𝐶))
142134, 141syl6bb 289 . . . . . . . . 9 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) ≠ (𝑌‘1)) → (∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))) ↔ (𝐴 · (𝑝‘2)) = ((𝐵 · (𝑝‘1)) + 𝐶)))
143142expcom 416 . . . . . . . 8 ((𝑋‘1) ≠ (𝑌‘1) → (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))) ↔ (𝐴 · (𝑝‘2)) = ((𝐵 · (𝑝‘1)) + 𝐶))))
144121, 143sylbir 237 . . . . . . 7 (¬ (𝑋‘1) = (𝑌‘1) → (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))) ↔ (𝐴 · (𝑝‘2)) = ((𝐵 · (𝑝‘1)) + 𝐶))))
145144expd 418 . . . . . 6 (¬ (𝑋‘1) = (𝑌‘1) → ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑝𝑃 → (∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))) ↔ (𝐴 · (𝑝‘2)) = ((𝐵 · (𝑝‘1)) + 𝐶)))))
146145impcom 410 . . . . 5 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ ¬ (𝑋‘1) = (𝑌‘1)) → (𝑝𝑃 → (∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))) ↔ (𝐴 · (𝑝‘2)) = ((𝐵 · (𝑝‘1)) + 𝐶))))
147146imp 409 . . . 4 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ ¬ (𝑋‘1) = (𝑌‘1)) ∧ 𝑝𝑃) → (∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))) ↔ (𝐴 · (𝑝‘2)) = ((𝐵 · (𝑝‘1)) + 𝐶)))
148147rabbidva 3478 . . 3 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ ¬ (𝑋‘1) = (𝑌‘1)) → {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))} = {𝑝𝑃 ∣ (𝐴 · (𝑝‘2)) = ((𝐵 · (𝑝‘1)) + 𝐶)})
149120, 148eqtrd 2856 . 2 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ ¬ (𝑋‘1) = (𝑌‘1)) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ (𝐴 · (𝑝‘2)) = ((𝐵 · (𝑝‘1)) + 𝐶)})
150118, 149pm2.61dan 811 1 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ (𝐴 · (𝑝‘2)) = ((𝐵 · (𝑝‘1)) + 𝐶)})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3016  wral 3138  wrex 3139  {crab 3142  {cpr 4569   Fn wfn 6350  cfv 6355  (class class class)co 7156  m cmap 8406  cc 10535  cr 10536  0cc0 10537  1c1 10538   + caddc 10540   · cmul 10542  cmin 10870  -cneg 10871  2c2 11693  ℝ^crrx 23986  LineMcline 44763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-tpos 7892  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-sup 8906  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-rp 12391  df-fz 12894  df-seq 13371  df-exp 13431  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-hom 16589  df-cco 16590  df-0g 16715  df-prds 16721  df-pws 16723  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-mhm 17956  df-grp 18106  df-minusg 18107  df-sbg 18108  df-subg 18276  df-ghm 18356  df-cmn 18908  df-mgp 19240  df-ur 19252  df-ring 19299  df-cring 19300  df-oppr 19373  df-dvdsr 19391  df-unit 19392  df-invr 19422  df-dvr 19433  df-rnghom 19467  df-drng 19504  df-field 19505  df-subrg 19533  df-staf 19616  df-srng 19617  df-lmod 19636  df-lss 19704  df-sra 19944  df-rgmod 19945  df-cnfld 20546  df-refld 20749  df-dsmm 20876  df-frlm 20891  df-tng 23194  df-tcph 23773  df-rrx 23988  df-line 44765
This theorem is referenced by:  rrx2linest2  44780  line2x  44790  itsclinecirc0b  44810
  Copyright terms: Public domain W3C validator