MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephsing Structured version   Visualization version   GIF version

Theorem alephsing 9050
Description: The cofinality of a limit aleph is the same as the cofinality of its argument, so if (ℵ‘𝐴) < 𝐴, then (ℵ‘𝐴) is singular. Conversely, if (ℵ‘𝐴) is regular (i.e. weakly inaccessible), then (ℵ‘𝐴) = 𝐴, so 𝐴 has to be rather large (see alephfp 8883). Proposition 11.13 of [TakeutiZaring] p. 103. (Contributed by Mario Carneiro, 9-Mar-2013.)
Assertion
Ref Expression
alephsing (Lim 𝐴 → (cf‘(ℵ‘𝐴)) = (cf‘𝐴))

Proof of Theorem alephsing
Dummy variables 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 alephfnon 8840 . . . . . . 7 ℵ Fn On
2 fnfun 5951 . . . . . . 7 (ℵ Fn On → Fun ℵ)
31, 2ax-mp 5 . . . . . 6 Fun ℵ
4 simpl 473 . . . . . 6 ((𝐴 ∈ V ∧ Lim 𝐴) → 𝐴 ∈ V)
5 resfunexg 6439 . . . . . 6 ((Fun ℵ ∧ 𝐴 ∈ V) → (ℵ ↾ 𝐴) ∈ V)
63, 4, 5sylancr 694 . . . . 5 ((𝐴 ∈ V ∧ Lim 𝐴) → (ℵ ↾ 𝐴) ∈ V)
7 limelon 5752 . . . . . . . 8 ((𝐴 ∈ V ∧ Lim 𝐴) → 𝐴 ∈ On)
8 onss 6944 . . . . . . . 8 (𝐴 ∈ On → 𝐴 ⊆ On)
97, 8syl 17 . . . . . . 7 ((𝐴 ∈ V ∧ Lim 𝐴) → 𝐴 ⊆ On)
10 fnssres 5967 . . . . . . 7 ((ℵ Fn On ∧ 𝐴 ⊆ On) → (ℵ ↾ 𝐴) Fn 𝐴)
111, 9, 10sylancr 694 . . . . . 6 ((𝐴 ∈ V ∧ Lim 𝐴) → (ℵ ↾ 𝐴) Fn 𝐴)
12 fvres 6169 . . . . . . . . . . 11 (𝑦𝐴 → ((ℵ ↾ 𝐴)‘𝑦) = (ℵ‘𝑦))
1312adantl 482 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝑦𝐴) → ((ℵ ↾ 𝐴)‘𝑦) = (ℵ‘𝑦))
14 alephord2i 8852 . . . . . . . . . . 11 (𝐴 ∈ On → (𝑦𝐴 → (ℵ‘𝑦) ∈ (ℵ‘𝐴)))
1514imp 445 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝑦𝐴) → (ℵ‘𝑦) ∈ (ℵ‘𝐴))
1613, 15eqeltrd 2698 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝑦𝐴) → ((ℵ ↾ 𝐴)‘𝑦) ∈ (ℵ‘𝐴))
177, 16sylan 488 . . . . . . . 8 (((𝐴 ∈ V ∧ Lim 𝐴) ∧ 𝑦𝐴) → ((ℵ ↾ 𝐴)‘𝑦) ∈ (ℵ‘𝐴))
1817ralrimiva 2961 . . . . . . 7 ((𝐴 ∈ V ∧ Lim 𝐴) → ∀𝑦𝐴 ((ℵ ↾ 𝐴)‘𝑦) ∈ (ℵ‘𝐴))
19 fnfvrnss 6351 . . . . . . 7 (((ℵ ↾ 𝐴) Fn 𝐴 ∧ ∀𝑦𝐴 ((ℵ ↾ 𝐴)‘𝑦) ∈ (ℵ‘𝐴)) → ran (ℵ ↾ 𝐴) ⊆ (ℵ‘𝐴))
2011, 18, 19syl2anc 692 . . . . . 6 ((𝐴 ∈ V ∧ Lim 𝐴) → ran (ℵ ↾ 𝐴) ⊆ (ℵ‘𝐴))
21 df-f 5856 . . . . . 6 ((ℵ ↾ 𝐴):𝐴⟶(ℵ‘𝐴) ↔ ((ℵ ↾ 𝐴) Fn 𝐴 ∧ ran (ℵ ↾ 𝐴) ⊆ (ℵ‘𝐴)))
2211, 20, 21sylanbrc 697 . . . . 5 ((𝐴 ∈ V ∧ Lim 𝐴) → (ℵ ↾ 𝐴):𝐴⟶(ℵ‘𝐴))
23 alephsmo 8877 . . . . . 6 Smo ℵ
24 fndm 5953 . . . . . . . 8 (ℵ Fn On → dom ℵ = On)
251, 24ax-mp 5 . . . . . . 7 dom ℵ = On
267, 25syl6eleqr 2709 . . . . . 6 ((𝐴 ∈ V ∧ Lim 𝐴) → 𝐴 ∈ dom ℵ)
27 smores 7401 . . . . . 6 ((Smo ℵ ∧ 𝐴 ∈ dom ℵ) → Smo (ℵ ↾ 𝐴))
2823, 26, 27sylancr 694 . . . . 5 ((𝐴 ∈ V ∧ Lim 𝐴) → Smo (ℵ ↾ 𝐴))
29 alephlim 8842 . . . . . . . 8 ((𝐴 ∈ V ∧ Lim 𝐴) → (ℵ‘𝐴) = 𝑦𝐴 (ℵ‘𝑦))
3029eleq2d 2684 . . . . . . 7 ((𝐴 ∈ V ∧ Lim 𝐴) → (𝑥 ∈ (ℵ‘𝐴) ↔ 𝑥 𝑦𝐴 (ℵ‘𝑦)))
31 eliun 4495 . . . . . . . 8 (𝑥 𝑦𝐴 (ℵ‘𝑦) ↔ ∃𝑦𝐴 𝑥 ∈ (ℵ‘𝑦))
32 alephon 8844 . . . . . . . . . 10 (ℵ‘𝑦) ∈ On
3332onelssi 5800 . . . . . . . . 9 (𝑥 ∈ (ℵ‘𝑦) → 𝑥 ⊆ (ℵ‘𝑦))
3433reximi 3006 . . . . . . . 8 (∃𝑦𝐴 𝑥 ∈ (ℵ‘𝑦) → ∃𝑦𝐴 𝑥 ⊆ (ℵ‘𝑦))
3531, 34sylbi 207 . . . . . . 7 (𝑥 𝑦𝐴 (ℵ‘𝑦) → ∃𝑦𝐴 𝑥 ⊆ (ℵ‘𝑦))
3630, 35syl6bi 243 . . . . . 6 ((𝐴 ∈ V ∧ Lim 𝐴) → (𝑥 ∈ (ℵ‘𝐴) → ∃𝑦𝐴 𝑥 ⊆ (ℵ‘𝑦)))
3736ralrimiv 2960 . . . . 5 ((𝐴 ∈ V ∧ Lim 𝐴) → ∀𝑥 ∈ (ℵ‘𝐴)∃𝑦𝐴 𝑥 ⊆ (ℵ‘𝑦))
38 feq1 5988 . . . . . . . 8 (𝑓 = (ℵ ↾ 𝐴) → (𝑓:𝐴⟶(ℵ‘𝐴) ↔ (ℵ ↾ 𝐴):𝐴⟶(ℵ‘𝐴)))
39 smoeq 7399 . . . . . . . 8 (𝑓 = (ℵ ↾ 𝐴) → (Smo 𝑓 ↔ Smo (ℵ ↾ 𝐴)))
40 fveq1 6152 . . . . . . . . . . . 12 (𝑓 = (ℵ ↾ 𝐴) → (𝑓𝑦) = ((ℵ ↾ 𝐴)‘𝑦))
4140, 12sylan9eq 2675 . . . . . . . . . . 11 ((𝑓 = (ℵ ↾ 𝐴) ∧ 𝑦𝐴) → (𝑓𝑦) = (ℵ‘𝑦))
4241sseq2d 3617 . . . . . . . . . 10 ((𝑓 = (ℵ ↾ 𝐴) ∧ 𝑦𝐴) → (𝑥 ⊆ (𝑓𝑦) ↔ 𝑥 ⊆ (ℵ‘𝑦)))
4342rexbidva 3043 . . . . . . . . 9 (𝑓 = (ℵ ↾ 𝐴) → (∃𝑦𝐴 𝑥 ⊆ (𝑓𝑦) ↔ ∃𝑦𝐴 𝑥 ⊆ (ℵ‘𝑦)))
4443ralbidv 2981 . . . . . . . 8 (𝑓 = (ℵ ↾ 𝐴) → (∀𝑥 ∈ (ℵ‘𝐴)∃𝑦𝐴 𝑥 ⊆ (𝑓𝑦) ↔ ∀𝑥 ∈ (ℵ‘𝐴)∃𝑦𝐴 𝑥 ⊆ (ℵ‘𝑦)))
4538, 39, 443anbi123d 1396 . . . . . . 7 (𝑓 = (ℵ ↾ 𝐴) → ((𝑓:𝐴⟶(ℵ‘𝐴) ∧ Smo 𝑓 ∧ ∀𝑥 ∈ (ℵ‘𝐴)∃𝑦𝐴 𝑥 ⊆ (𝑓𝑦)) ↔ ((ℵ ↾ 𝐴):𝐴⟶(ℵ‘𝐴) ∧ Smo (ℵ ↾ 𝐴) ∧ ∀𝑥 ∈ (ℵ‘𝐴)∃𝑦𝐴 𝑥 ⊆ (ℵ‘𝑦))))
4645spcegv 3283 . . . . . 6 ((ℵ ↾ 𝐴) ∈ V → (((ℵ ↾ 𝐴):𝐴⟶(ℵ‘𝐴) ∧ Smo (ℵ ↾ 𝐴) ∧ ∀𝑥 ∈ (ℵ‘𝐴)∃𝑦𝐴 𝑥 ⊆ (ℵ‘𝑦)) → ∃𝑓(𝑓:𝐴⟶(ℵ‘𝐴) ∧ Smo 𝑓 ∧ ∀𝑥 ∈ (ℵ‘𝐴)∃𝑦𝐴 𝑥 ⊆ (𝑓𝑦))))
4746imp 445 . . . . 5 (((ℵ ↾ 𝐴) ∈ V ∧ ((ℵ ↾ 𝐴):𝐴⟶(ℵ‘𝐴) ∧ Smo (ℵ ↾ 𝐴) ∧ ∀𝑥 ∈ (ℵ‘𝐴)∃𝑦𝐴 𝑥 ⊆ (ℵ‘𝑦))) → ∃𝑓(𝑓:𝐴⟶(ℵ‘𝐴) ∧ Smo 𝑓 ∧ ∀𝑥 ∈ (ℵ‘𝐴)∃𝑦𝐴 𝑥 ⊆ (𝑓𝑦)))
486, 22, 28, 37, 47syl13anc 1325 . . . 4 ((𝐴 ∈ V ∧ Lim 𝐴) → ∃𝑓(𝑓:𝐴⟶(ℵ‘𝐴) ∧ Smo 𝑓 ∧ ∀𝑥 ∈ (ℵ‘𝐴)∃𝑦𝐴 𝑥 ⊆ (𝑓𝑦)))
49 alephon 8844 . . . . 5 (ℵ‘𝐴) ∈ On
50 cfcof 9048 . . . . 5 (((ℵ‘𝐴) ∈ On ∧ 𝐴 ∈ On) → (∃𝑓(𝑓:𝐴⟶(ℵ‘𝐴) ∧ Smo 𝑓 ∧ ∀𝑥 ∈ (ℵ‘𝐴)∃𝑦𝐴 𝑥 ⊆ (𝑓𝑦)) → (cf‘(ℵ‘𝐴)) = (cf‘𝐴)))
5149, 7, 50sylancr 694 . . . 4 ((𝐴 ∈ V ∧ Lim 𝐴) → (∃𝑓(𝑓:𝐴⟶(ℵ‘𝐴) ∧ Smo 𝑓 ∧ ∀𝑥 ∈ (ℵ‘𝐴)∃𝑦𝐴 𝑥 ⊆ (𝑓𝑦)) → (cf‘(ℵ‘𝐴)) = (cf‘𝐴)))
5248, 51mpd 15 . . 3 ((𝐴 ∈ V ∧ Lim 𝐴) → (cf‘(ℵ‘𝐴)) = (cf‘𝐴))
5352expcom 451 . 2 (Lim 𝐴 → (𝐴 ∈ V → (cf‘(ℵ‘𝐴)) = (cf‘𝐴)))
54 cf0 9025 . . 3 (cf‘∅) = ∅
55 fvprc 6147 . . . 4 𝐴 ∈ V → (ℵ‘𝐴) = ∅)
5655fveq2d 6157 . . 3 𝐴 ∈ V → (cf‘(ℵ‘𝐴)) = (cf‘∅))
57 fvprc 6147 . . 3 𝐴 ∈ V → (cf‘𝐴) = ∅)
5854, 56, 573eqtr4a 2681 . 2 𝐴 ∈ V → (cf‘(ℵ‘𝐴)) = (cf‘𝐴))
5953, 58pm2.61d1 171 1 (Lim 𝐴 → (cf‘(ℵ‘𝐴)) = (cf‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1036   = wceq 1480  wex 1701  wcel 1987  wral 2907  wrex 2908  Vcvv 3189  wss 3559  c0 3896   ciun 4490  dom cdm 5079  ran crn 5080  cres 5081  Oncon0 5687  Lim wlim 5688  Fun wfun 5846   Fn wfn 5847  wf 5848  cfv 5852  Smo wsmo 7394  cale 8714  cfccf 8715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-inf2 8490
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-smo 7395  df-recs 7420  df-rdg 7458  df-er 7694  df-map 7811  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-oi 8367  df-har 8415  df-card 8717  df-aleph 8718  df-cf 8719  df-acn 8720
This theorem is referenced by:  alephom  9359  winafp  9471
  Copyright terms: Public domain W3C validator