MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axcontlem9 Structured version   Visualization version   GIF version

Theorem axcontlem9 26072
Description: Lemma for axcont 26076. Given the separation assumption, all values of 𝐹 over 𝐴 are less than or equal to all values of 𝐹 over 𝐵. (Contributed by Scott Fenton, 20-Jun-2013.)
Hypotheses
Ref Expression
axcontlem9.1 𝐷 = {𝑝 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn ⟨𝑍, 𝑝⟩ ∨ 𝑝 Btwn ⟨𝑍, 𝑈⟩)}
axcontlem9.2 𝐹 = {⟨𝑥, 𝑡⟩ ∣ (𝑥𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖)))))}
Assertion
Ref Expression
axcontlem9 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → ∀𝑛 ∈ (𝐹𝐴)∀𝑚 ∈ (𝐹𝐵)𝑛𝑚)
Distinct variable groups:   𝐴,𝑚,𝑛,𝑝,𝑥   𝐵,𝑚,𝑛,𝑝,𝑥,𝑦   𝑡,𝐷,𝑥   𝑖,𝐹   𝑚,𝐹   𝑡,𝐹   𝑖,𝑝,𝑡,𝑥,𝑁   𝑚,𝑁,𝑛,𝑝   𝑡,𝑁,𝑥   𝑦,𝑁   𝑈,𝑖   𝑈,𝑚,𝑛,𝑝   𝑡,𝑈,𝑥   𝑦,𝑈   𝑖,𝑍   𝑚,𝑍,𝑛,𝑝   𝑡,𝑍,𝑥   𝑦,𝑍   𝐹,𝑝
Allowed substitution hints:   𝐴(𝑦,𝑡,𝑖)   𝐵(𝑡,𝑖)   𝐷(𝑦,𝑖,𝑚,𝑛,𝑝)   𝐹(𝑥,𝑦,𝑛)

Proof of Theorem axcontlem9
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 807 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → 𝑁 ∈ ℕ)
2 simprl1 1267 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → 𝑍 ∈ (𝔼‘𝑁))
3 simplr1 1261 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → 𝐴 ⊆ (𝔼‘𝑁))
4 simprl2 1269 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → 𝑈𝐴)
53, 4sseldd 3745 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → 𝑈 ∈ (𝔼‘𝑁))
6 simprr 813 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → 𝑍𝑈)
7 axcontlem9.1 . . . . . 6 𝐷 = {𝑝 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn ⟨𝑍, 𝑝⟩ ∨ 𝑝 Btwn ⟨𝑍, 𝑈⟩)}
8 axcontlem9.2 . . . . . 6 𝐹 = {⟨𝑥, 𝑡⟩ ∣ (𝑥𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖)))))}
97, 8axcontlem2 26065 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) → 𝐹:𝐷1-1-onto→(0[,)+∞))
101, 2, 5, 6, 9syl31anc 1480 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → 𝐹:𝐷1-1-onto→(0[,)+∞))
11 f1ofun 6301 . . . 4 (𝐹:𝐷1-1-onto→(0[,)+∞) → Fun 𝐹)
12 fvelima 6411 . . . . 5 ((Fun 𝐹𝑛 ∈ (𝐹𝐴)) → ∃𝑎𝐴 (𝐹𝑎) = 𝑛)
1312ex 449 . . . 4 (Fun 𝐹 → (𝑛 ∈ (𝐹𝐴) → ∃𝑎𝐴 (𝐹𝑎) = 𝑛))
1410, 11, 133syl 18 . . 3 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → (𝑛 ∈ (𝐹𝐴) → ∃𝑎𝐴 (𝐹𝑎) = 𝑛))
15 fvelima 6411 . . . . 5 ((Fun 𝐹𝑚 ∈ (𝐹𝐵)) → ∃𝑏𝐵 (𝐹𝑏) = 𝑚)
1615ex 449 . . . 4 (Fun 𝐹 → (𝑚 ∈ (𝐹𝐵) → ∃𝑏𝐵 (𝐹𝑏) = 𝑚))
1710, 11, 163syl 18 . . 3 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → (𝑚 ∈ (𝐹𝐵) → ∃𝑏𝐵 (𝐹𝑏) = 𝑚))
18 reeanv 3245 . . . 4 (∃𝑎𝐴𝑏𝐵 ((𝐹𝑎) = 𝑛 ∧ (𝐹𝑏) = 𝑚) ↔ (∃𝑎𝐴 (𝐹𝑎) = 𝑛 ∧ ∃𝑏𝐵 (𝐹𝑏) = 𝑚))
19 simplr3 1265 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)
20 breq1 4807 . . . . . . . . 9 (𝑥 = 𝑎 → (𝑥 Btwn ⟨𝑍, 𝑦⟩ ↔ 𝑎 Btwn ⟨𝑍, 𝑦⟩))
21 opeq2 4554 . . . . . . . . . 10 (𝑦 = 𝑏 → ⟨𝑍, 𝑦⟩ = ⟨𝑍, 𝑏⟩)
2221breq2d 4816 . . . . . . . . 9 (𝑦 = 𝑏 → (𝑎 Btwn ⟨𝑍, 𝑦⟩ ↔ 𝑎 Btwn ⟨𝑍, 𝑏⟩))
2320, 22rspc2v 3461 . . . . . . . 8 ((𝑎𝐴𝑏𝐵) → (∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩ → 𝑎 Btwn ⟨𝑍, 𝑏⟩))
2419, 23mpan9 487 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ (𝑎𝐴𝑏𝐵)) → 𝑎 Btwn ⟨𝑍, 𝑏⟩)
25 simplll 815 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ (𝑎𝐴𝑏𝐵)) → 𝑁 ∈ ℕ)
262adantr 472 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ (𝑎𝐴𝑏𝐵)) → 𝑍 ∈ (𝔼‘𝑁))
275adantr 472 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ (𝑎𝐴𝑏𝐵)) → 𝑈 ∈ (𝔼‘𝑁))
2825, 26, 273jca 1123 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ (𝑎𝐴𝑏𝐵)) → (𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)))
29 simplrr 820 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ (𝑎𝐴𝑏𝐵)) → 𝑍𝑈)
307axcontlem4 26067 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → 𝐴𝐷)
3130sseld 3743 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → (𝑎𝐴𝑎𝐷))
32 simpl 474 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → (𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)))
337axcontlem3 26066 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ (𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝑍𝑈)) → 𝐵𝐷)
3432, 2, 4, 6, 33syl13anc 1479 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → 𝐵𝐷)
3534sseld 3743 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → (𝑏𝐵𝑏𝐷))
3631, 35anim12d 587 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → ((𝑎𝐴𝑏𝐵) → (𝑎𝐷𝑏𝐷)))
3736imp 444 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ (𝑎𝐴𝑏𝐵)) → (𝑎𝐷𝑏𝐷))
387, 8axcontlem7 26070 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ (𝑎𝐷𝑏𝐷)) → (𝑎 Btwn ⟨𝑍, 𝑏⟩ ↔ (𝐹𝑎) ≤ (𝐹𝑏)))
3928, 29, 37, 38syl21anc 1476 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ (𝑎𝐴𝑏𝐵)) → (𝑎 Btwn ⟨𝑍, 𝑏⟩ ↔ (𝐹𝑎) ≤ (𝐹𝑏)))
4024, 39mpbid 222 . . . . . 6 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ (𝑎𝐴𝑏𝐵)) → (𝐹𝑎) ≤ (𝐹𝑏))
41 breq12 4809 . . . . . 6 (((𝐹𝑎) = 𝑛 ∧ (𝐹𝑏) = 𝑚) → ((𝐹𝑎) ≤ (𝐹𝑏) ↔ 𝑛𝑚))
4240, 41syl5ibcom 235 . . . . 5 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ (𝑎𝐴𝑏𝐵)) → (((𝐹𝑎) = 𝑛 ∧ (𝐹𝑏) = 𝑚) → 𝑛𝑚))
4342rexlimdvva 3176 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → (∃𝑎𝐴𝑏𝐵 ((𝐹𝑎) = 𝑛 ∧ (𝐹𝑏) = 𝑚) → 𝑛𝑚))
4418, 43syl5bir 233 . . 3 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → ((∃𝑎𝐴 (𝐹𝑎) = 𝑛 ∧ ∃𝑏𝐵 (𝐹𝑏) = 𝑚) → 𝑛𝑚))
4514, 17, 44syl2and 501 . 2 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → ((𝑛 ∈ (𝐹𝐴) ∧ 𝑚 ∈ (𝐹𝐵)) → 𝑛𝑚))
4645ralrimivv 3108 1 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → ∀𝑛 ∈ (𝐹𝐴)∀𝑚 ∈ (𝐹𝐵)𝑛𝑚)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 382  wa 383  w3a 1072   = wceq 1632  wcel 2139  wne 2932  wral 3050  wrex 3051  {crab 3054  wss 3715  c0 4058  cop 4327   class class class wbr 4804  {copab 4864  cima 5269  Fun wfun 6043  1-1-ontowf1o 6048  cfv 6049  (class class class)co 6814  0cc0 10148  1c1 10149   + caddc 10151   · cmul 10153  +∞cpnf 10283  cle 10287  cmin 10478  cn 11232  [,)cico 12390  ...cfz 12539  𝔼cee 25988   Btwn cbtwn 25989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-er 7913  df-map 8027  df-en 8124  df-dom 8125  df-sdom 8126  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-z 11590  df-uz 11900  df-ico 12394  df-icc 12395  df-fz 12540  df-ee 25991  df-btwn 25992
This theorem is referenced by:  axcontlem10  26073
  Copyright terms: Public domain W3C validator