Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  canthwe Structured version   Visualization version   GIF version

Theorem canthwe 9511
 Description: The set of well-orders of a set 𝐴 strictly dominates 𝐴. A stronger form of canth2 8154. Corollary 1.4(b) of [KanamoriPincus] p. 417. (Contributed by Mario Carneiro, 31-May-2015.)
Hypothesis
Ref Expression
canthwe.1 𝑂 = {⟨𝑥, 𝑟⟩ ∣ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)}
Assertion
Ref Expression
canthwe (𝐴𝑉𝐴𝑂)
Distinct variable groups:   𝑥,𝑟,𝑂   𝑉,𝑟,𝑥   𝐴,𝑟,𝑥

Proof of Theorem canthwe
Dummy variables 𝑢 𝑦 𝑓 𝑣 𝑤 𝑎 𝑠 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1081 . . . . . . . 8 ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) → 𝑥𝐴)
2 selpw 4198 . . . . . . . 8 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
31, 2sylibr 224 . . . . . . 7 ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) → 𝑥 ∈ 𝒫 𝐴)
4 simp2 1082 . . . . . . . . 9 ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) → 𝑟 ⊆ (𝑥 × 𝑥))
5 xpss12 5158 . . . . . . . . . 10 ((𝑥𝐴𝑥𝐴) → (𝑥 × 𝑥) ⊆ (𝐴 × 𝐴))
61, 1, 5syl2anc 694 . . . . . . . . 9 ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) → (𝑥 × 𝑥) ⊆ (𝐴 × 𝐴))
74, 6sstrd 3646 . . . . . . . 8 ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) → 𝑟 ⊆ (𝐴 × 𝐴))
8 selpw 4198 . . . . . . . 8 (𝑟 ∈ 𝒫 (𝐴 × 𝐴) ↔ 𝑟 ⊆ (𝐴 × 𝐴))
97, 8sylibr 224 . . . . . . 7 ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) → 𝑟 ∈ 𝒫 (𝐴 × 𝐴))
103, 9jca 553 . . . . . 6 ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) → (𝑥 ∈ 𝒫 𝐴𝑟 ∈ 𝒫 (𝐴 × 𝐴)))
1110ssopab2i 5032 . . . . 5 {⟨𝑥, 𝑟⟩ ∣ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)} ⊆ {⟨𝑥, 𝑟⟩ ∣ (𝑥 ∈ 𝒫 𝐴𝑟 ∈ 𝒫 (𝐴 × 𝐴))}
12 canthwe.1 . . . . 5 𝑂 = {⟨𝑥, 𝑟⟩ ∣ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)}
13 df-xp 5149 . . . . 5 (𝒫 𝐴 × 𝒫 (𝐴 × 𝐴)) = {⟨𝑥, 𝑟⟩ ∣ (𝑥 ∈ 𝒫 𝐴𝑟 ∈ 𝒫 (𝐴 × 𝐴))}
1411, 12, 133sstr4i 3677 . . . 4 𝑂 ⊆ (𝒫 𝐴 × 𝒫 (𝐴 × 𝐴))
15 pwexg 4880 . . . . 5 (𝐴𝑉 → 𝒫 𝐴 ∈ V)
16 sqxpexg 7005 . . . . . 6 (𝐴𝑉 → (𝐴 × 𝐴) ∈ V)
17 pwexg 4880 . . . . . 6 ((𝐴 × 𝐴) ∈ V → 𝒫 (𝐴 × 𝐴) ∈ V)
1816, 17syl 17 . . . . 5 (𝐴𝑉 → 𝒫 (𝐴 × 𝐴) ∈ V)
19 xpexg 7002 . . . . 5 ((𝒫 𝐴 ∈ V ∧ 𝒫 (𝐴 × 𝐴) ∈ V) → (𝒫 𝐴 × 𝒫 (𝐴 × 𝐴)) ∈ V)
2015, 18, 19syl2anc 694 . . . 4 (𝐴𝑉 → (𝒫 𝐴 × 𝒫 (𝐴 × 𝐴)) ∈ V)
21 ssexg 4837 . . . 4 ((𝑂 ⊆ (𝒫 𝐴 × 𝒫 (𝐴 × 𝐴)) ∧ (𝒫 𝐴 × 𝒫 (𝐴 × 𝐴)) ∈ V) → 𝑂 ∈ V)
2214, 20, 21sylancr 696 . . 3 (𝐴𝑉𝑂 ∈ V)
23 simpr 476 . . . . . . . 8 ((𝐴𝑉𝑢𝐴) → 𝑢𝐴)
2423snssd 4372 . . . . . . 7 ((𝐴𝑉𝑢𝐴) → {𝑢} ⊆ 𝐴)
25 0ss 4005 . . . . . . . 8 ∅ ⊆ ({𝑢} × {𝑢})
2625a1i 11 . . . . . . 7 ((𝐴𝑉𝑢𝐴) → ∅ ⊆ ({𝑢} × {𝑢}))
27 rel0 5276 . . . . . . . 8 Rel ∅
28 br0 4734 . . . . . . . . 9 ¬ 𝑢𝑢
29 wesn 5224 . . . . . . . . 9 (Rel ∅ → (∅ We {𝑢} ↔ ¬ 𝑢𝑢))
3028, 29mpbiri 248 . . . . . . . 8 (Rel ∅ → ∅ We {𝑢})
3127, 30mp1i 13 . . . . . . 7 ((𝐴𝑉𝑢𝐴) → ∅ We {𝑢})
32 snex 4938 . . . . . . . 8 {𝑢} ∈ V
33 0ex 4823 . . . . . . . 8 ∅ ∈ V
34 simpl 472 . . . . . . . . . 10 ((𝑥 = {𝑢} ∧ 𝑟 = ∅) → 𝑥 = {𝑢})
3534sseq1d 3665 . . . . . . . . 9 ((𝑥 = {𝑢} ∧ 𝑟 = ∅) → (𝑥𝐴 ↔ {𝑢} ⊆ 𝐴))
36 simpr 476 . . . . . . . . . 10 ((𝑥 = {𝑢} ∧ 𝑟 = ∅) → 𝑟 = ∅)
3734sqxpeqd 5175 . . . . . . . . . 10 ((𝑥 = {𝑢} ∧ 𝑟 = ∅) → (𝑥 × 𝑥) = ({𝑢} × {𝑢}))
3836, 37sseq12d 3667 . . . . . . . . 9 ((𝑥 = {𝑢} ∧ 𝑟 = ∅) → (𝑟 ⊆ (𝑥 × 𝑥) ↔ ∅ ⊆ ({𝑢} × {𝑢})))
39 weeq2 5132 . . . . . . . . . 10 (𝑥 = {𝑢} → (𝑟 We 𝑥𝑟 We {𝑢}))
40 weeq1 5131 . . . . . . . . . 10 (𝑟 = ∅ → (𝑟 We {𝑢} ↔ ∅ We {𝑢}))
4139, 40sylan9bb 736 . . . . . . . . 9 ((𝑥 = {𝑢} ∧ 𝑟 = ∅) → (𝑟 We 𝑥 ↔ ∅ We {𝑢}))
4235, 38, 413anbi123d 1439 . . . . . . . 8 ((𝑥 = {𝑢} ∧ 𝑟 = ∅) → ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) ↔ ({𝑢} ⊆ 𝐴 ∧ ∅ ⊆ ({𝑢} × {𝑢}) ∧ ∅ We {𝑢})))
4332, 33, 42opelopaba 5020 . . . . . . 7 (⟨{𝑢}, ∅⟩ ∈ {⟨𝑥, 𝑟⟩ ∣ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)} ↔ ({𝑢} ⊆ 𝐴 ∧ ∅ ⊆ ({𝑢} × {𝑢}) ∧ ∅ We {𝑢}))
4424, 26, 31, 43syl3anbrc 1265 . . . . . 6 ((𝐴𝑉𝑢𝐴) → ⟨{𝑢}, ∅⟩ ∈ {⟨𝑥, 𝑟⟩ ∣ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)})
4544, 12syl6eleqr 2741 . . . . 5 ((𝐴𝑉𝑢𝐴) → ⟨{𝑢}, ∅⟩ ∈ 𝑂)
4645ex 449 . . . 4 (𝐴𝑉 → (𝑢𝐴 → ⟨{𝑢}, ∅⟩ ∈ 𝑂))
47 eqid 2651 . . . . . . 7 ∅ = ∅
48 snex 4938 . . . . . . . 8 {𝑣} ∈ V
4948, 33opth2 4978 . . . . . . 7 (⟨{𝑢}, ∅⟩ = ⟨{𝑣}, ∅⟩ ↔ ({𝑢} = {𝑣} ∧ ∅ = ∅))
5047, 49mpbiran2 974 . . . . . 6 (⟨{𝑢}, ∅⟩ = ⟨{𝑣}, ∅⟩ ↔ {𝑢} = {𝑣})
51 vex 3234 . . . . . . 7 𝑢 ∈ V
52 sneqbg 4406 . . . . . . 7 (𝑢 ∈ V → ({𝑢} = {𝑣} ↔ 𝑢 = 𝑣))
5351, 52ax-mp 5 . . . . . 6 ({𝑢} = {𝑣} ↔ 𝑢 = 𝑣)
5450, 53bitri 264 . . . . 5 (⟨{𝑢}, ∅⟩ = ⟨{𝑣}, ∅⟩ ↔ 𝑢 = 𝑣)
55542a1i 12 . . . 4 (𝐴𝑉 → ((𝑢𝐴𝑣𝐴) → (⟨{𝑢}, ∅⟩ = ⟨{𝑣}, ∅⟩ ↔ 𝑢 = 𝑣)))
5646, 55dom2d 8038 . . 3 (𝐴𝑉 → (𝑂 ∈ V → 𝐴𝑂))
5722, 56mpd 15 . 2 (𝐴𝑉𝐴𝑂)
58 eqid 2651 . . . . . . 7 {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 [(𝑠 “ {𝑧}) / 𝑣](𝑣𝑓(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))} = {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 [(𝑠 “ {𝑧}) / 𝑣](𝑣𝑓(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))}
5958fpwwe2cbv 9490 . . . . . 6 {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 [(𝑠 “ {𝑧}) / 𝑣](𝑣𝑓(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))} = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑤](𝑤𝑓(𝑟 ∩ (𝑤 × 𝑤))) = 𝑦))}
60 eqid 2651 . . . . . 6 dom {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 [(𝑠 “ {𝑧}) / 𝑣](𝑣𝑓(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))} = dom {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 [(𝑠 “ {𝑧}) / 𝑣](𝑣𝑓(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))}
61 eqid 2651 . . . . . 6 (({⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 [(𝑠 “ {𝑧}) / 𝑣](𝑣𝑓(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))}‘ dom {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 [(𝑠 “ {𝑧}) / 𝑣](𝑣𝑓(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))}) “ {( dom {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 [(𝑠 “ {𝑧}) / 𝑣](𝑣𝑓(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))}𝑓({⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 [(𝑠 “ {𝑧}) / 𝑣](𝑣𝑓(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))}‘ dom {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 [(𝑠 “ {𝑧}) / 𝑣](𝑣𝑓(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))}))}) = (({⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 [(𝑠 “ {𝑧}) / 𝑣](𝑣𝑓(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))}‘ dom {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 [(𝑠 “ {𝑧}) / 𝑣](𝑣𝑓(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))}) “ {( dom {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 [(𝑠 “ {𝑧}) / 𝑣](𝑣𝑓(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))}𝑓({⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 [(𝑠 “ {𝑧}) / 𝑣](𝑣𝑓(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))}‘ dom {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 [(𝑠 “ {𝑧}) / 𝑣](𝑣𝑓(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))}))})
6212, 59, 60, 61canthwelem 9510 . . . . 5 (𝐴𝑉 → ¬ 𝑓:𝑂1-1𝐴)
63 f1of1 6174 . . . . 5 (𝑓:𝑂1-1-onto𝐴𝑓:𝑂1-1𝐴)
6462, 63nsyl 135 . . . 4 (𝐴𝑉 → ¬ 𝑓:𝑂1-1-onto𝐴)
6564nexdv 1904 . . 3 (𝐴𝑉 → ¬ ∃𝑓 𝑓:𝑂1-1-onto𝐴)
66 ensym 8046 . . . 4 (𝐴𝑂𝑂𝐴)
67 bren 8006 . . . 4 (𝑂𝐴 ↔ ∃𝑓 𝑓:𝑂1-1-onto𝐴)
6866, 67sylib 208 . . 3 (𝐴𝑂 → ∃𝑓 𝑓:𝑂1-1-onto𝐴)
6965, 68nsyl 135 . 2 (𝐴𝑉 → ¬ 𝐴𝑂)
70 brsdom 8020 . 2 (𝐴𝑂 ↔ (𝐴𝑂 ∧ ¬ 𝐴𝑂))
7157, 69, 70sylanbrc 699 1 (𝐴𝑉𝐴𝑂)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1054   = wceq 1523  ∃wex 1744   ∈ wcel 2030  ∀wral 2941  Vcvv 3231  [wsbc 3468   ∩ cin 3606   ⊆ wss 3607  ∅c0 3948  𝒫 cpw 4191  {csn 4210  ⟨cop 4216  ∪ cuni 4468   class class class wbr 4685  {copab 4745   We wwe 5101   × cxp 5141  ◡ccnv 5142  dom cdm 5143   “ cima 5146  Rel wrel 5148  –1-1→wf1 5923  –1-1-onto→wf1o 5925  ‘cfv 5926  (class class class)co 6690   ≈ cen 7994   ≼ cdom 7995   ≺ csdm 7996 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-wrecs 7452  df-recs 7513  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-oi 8456 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator