MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cats1fv Structured version   Visualization version   GIF version

Theorem cats1fv 14221
Description: A symbol other than the last in a concatenation with a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.)
Hypotheses
Ref Expression
cats1cld.1 𝑇 = (𝑆 ++ ⟨“𝑋”⟩)
cats1cli.2 𝑆 ∈ Word V
cats1fvn.3 (♯‘𝑆) = 𝑀
cats1fv.4 (𝑌𝑉 → (𝑆𝑁) = 𝑌)
cats1fv.5 𝑁 ∈ ℕ0
cats1fv.6 𝑁 < 𝑀
Assertion
Ref Expression
cats1fv (𝑌𝑉 → (𝑇𝑁) = 𝑌)

Proof of Theorem cats1fv
StepHypRef Expression
1 cats1cld.1 . . . 4 𝑇 = (𝑆 ++ ⟨“𝑋”⟩)
21fveq1i 6671 . . 3 (𝑇𝑁) = ((𝑆 ++ ⟨“𝑋”⟩)‘𝑁)
3 cats1cli.2 . . . 4 𝑆 ∈ Word V
4 s1cli 13959 . . . 4 ⟨“𝑋”⟩ ∈ Word V
5 cats1fv.5 . . . . . 6 𝑁 ∈ ℕ0
6 nn0uz 12281 . . . . . 6 0 = (ℤ‘0)
75, 6eleqtri 2911 . . . . 5 𝑁 ∈ (ℤ‘0)
8 lencl 13883 . . . . . 6 (𝑆 ∈ Word V → (♯‘𝑆) ∈ ℕ0)
9 nn0z 12006 . . . . . 6 ((♯‘𝑆) ∈ ℕ0 → (♯‘𝑆) ∈ ℤ)
103, 8, 9mp2b 10 . . . . 5 (♯‘𝑆) ∈ ℤ
11 cats1fv.6 . . . . . 6 𝑁 < 𝑀
12 cats1fvn.3 . . . . . 6 (♯‘𝑆) = 𝑀
1311, 12breqtrri 5093 . . . . 5 𝑁 < (♯‘𝑆)
14 elfzo2 13042 . . . . 5 (𝑁 ∈ (0..^(♯‘𝑆)) ↔ (𝑁 ∈ (ℤ‘0) ∧ (♯‘𝑆) ∈ ℤ ∧ 𝑁 < (♯‘𝑆)))
157, 10, 13, 14mpbir3an 1337 . . . 4 𝑁 ∈ (0..^(♯‘𝑆))
16 ccatval1 13930 . . . 4 ((𝑆 ∈ Word V ∧ ⟨“𝑋”⟩ ∈ Word V ∧ 𝑁 ∈ (0..^(♯‘𝑆))) → ((𝑆 ++ ⟨“𝑋”⟩)‘𝑁) = (𝑆𝑁))
173, 4, 15, 16mp3an 1457 . . 3 ((𝑆 ++ ⟨“𝑋”⟩)‘𝑁) = (𝑆𝑁)
182, 17eqtri 2844 . 2 (𝑇𝑁) = (𝑆𝑁)
19 cats1fv.4 . 2 (𝑌𝑉 → (𝑆𝑁) = 𝑌)
2018, 19syl5eq 2868 1 (𝑌𝑉 → (𝑇𝑁) = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2114  Vcvv 3494   class class class wbr 5066  cfv 6355  (class class class)co 7156  0cc0 10537   < clt 10675  0cn0 11898  cz 11982  cuz 12244  ..^cfzo 13034  chash 13691  Word cword 13862   ++ cconcat 13922  ⟨“cs1 13949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-n0 11899  df-z 11983  df-uz 12245  df-fz 12894  df-fzo 13035  df-hash 13692  df-word 13863  df-concat 13923  df-s1 13950
This theorem is referenced by:  s2fv0  14249  s3fv0  14253  s3fv1  14254  s4fv0  14257  s4fv1  14258  s4fv2  14259
  Copyright terms: Public domain W3C validator