MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s1cli Structured version   Visualization version   GIF version

Theorem s1cli 13183
Description: A singleton word is a word. (Contributed by Mario Carneiro, 26-Feb-2016.)
Assertion
Ref Expression
s1cli ⟨“𝐴”⟩ ∈ Word V

Proof of Theorem s1cli
StepHypRef Expression
1 ids1 13176 . 2 ⟨“𝐴”⟩ = ⟨“( I ‘𝐴)”⟩
2 fvex 6098 . . 3 ( I ‘𝐴) ∈ V
3 s1cl 13181 . . 3 (( I ‘𝐴) ∈ V → ⟨“( I ‘𝐴)”⟩ ∈ Word V)
42, 3ax-mp 5 . 2 ⟨“( I ‘𝐴)”⟩ ∈ Word V
51, 4eqeltri 2683 1 ⟨“𝐴”⟩ ∈ Word V
Colors of variables: wff setvar class
Syntax hints:  wcel 1976  Vcvv 3172   I cid 4938  cfv 5790  Word cword 13092  ⟨“cs1 13095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6935  df-1st 7036  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-er 7606  df-en 7819  df-dom 7820  df-sdom 7821  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-nn 10868  df-n0 11140  df-z 11211  df-uz 11520  df-fz 12153  df-fzo 12290  df-word 13100  df-s1 13103
This theorem is referenced by:  s1dm  13187  revs1  13311  cats1cli  13399  cats1fvn  13400  cats1fv  13401  cats1len  13402  cats1cat  13403  cats2cat  13404  s2cli  13421  s2fv0  13428  s2fv1  13429  s2len  13430  s0s1  13463  s1s2  13464  s1s3  13465  s1s4  13466  s1s5  13467  s1s6  13468  s1s7  13469  s2s2  13470  s4s2  13471  s2s5  13475  s5s2  13476  mrsubcv  30467  mrsubrn  30470  mvhf1  30516  msubvrs  30517  lp1cycl  41314  1pthon2v-av  41315  1wlk2v2e  41319  konigsberglem1  41417  konigsberglem2  41418  konigsberglem3  41419
  Copyright terms: Public domain W3C validator