MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cayleylem2 Structured version   Visualization version   GIF version

Theorem cayleylem2 18541
Description: Lemma for cayley 18542. (Contributed by Paul Chapman, 3-Mar-2008.) (Revised by Mario Carneiro, 13-Jan-2015.)
Hypotheses
Ref Expression
cayleylem1.x 𝑋 = (Base‘𝐺)
cayleylem1.p + = (+g𝐺)
cayleylem1.u 0 = (0g𝐺)
cayleylem1.h 𝐻 = (SymGrp‘𝑋)
cayleylem1.s 𝑆 = (Base‘𝐻)
cayleylem1.f 𝐹 = (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔 + 𝑎)))
Assertion
Ref Expression
cayleylem2 (𝐺 ∈ Grp → 𝐹:𝑋1-1𝑆)
Distinct variable groups:   𝑔,𝑎, +   𝐺,𝑎,𝑔   𝑔,𝐻   𝑋,𝑎,𝑔   0 ,𝑎
Allowed substitution hints:   𝑆(𝑔,𝑎)   𝐹(𝑔,𝑎)   𝐻(𝑎)   0 (𝑔)

Proof of Theorem cayleylem2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fveq1 6669 . . . 4 ((𝐹𝑥) = (0g𝐻) → ((𝐹𝑥)‘ 0 ) = ((0g𝐻)‘ 0 ))
2 simpr 487 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → 𝑥𝑋)
3 cayleylem1.x . . . . . . . . 9 𝑋 = (Base‘𝐺)
4 cayleylem1.u . . . . . . . . 9 0 = (0g𝐺)
53, 4grpidcl 18131 . . . . . . . 8 (𝐺 ∈ Grp → 0𝑋)
65adantr 483 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → 0𝑋)
7 cayleylem1.f . . . . . . . 8 𝐹 = (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔 + 𝑎)))
87, 3grplactval 18201 . . . . . . 7 ((𝑥𝑋0𝑋) → ((𝐹𝑥)‘ 0 ) = (𝑥 + 0 ))
92, 6, 8syl2anc 586 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → ((𝐹𝑥)‘ 0 ) = (𝑥 + 0 ))
10 cayleylem1.p . . . . . . 7 + = (+g𝐺)
113, 10, 4grprid 18134 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → (𝑥 + 0 ) = 𝑥)
129, 11eqtrd 2856 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → ((𝐹𝑥)‘ 0 ) = 𝑥)
133fvexi 6684 . . . . . . . 8 𝑋 ∈ V
14 cayleylem1.h . . . . . . . . 9 𝐻 = (SymGrp‘𝑋)
1514symgid 18529 . . . . . . . 8 (𝑋 ∈ V → ( I ↾ 𝑋) = (0g𝐻))
1613, 15ax-mp 5 . . . . . . 7 ( I ↾ 𝑋) = (0g𝐻)
1716fveq1i 6671 . . . . . 6 (( I ↾ 𝑋)‘ 0 ) = ((0g𝐻)‘ 0 )
18 fvresi 6935 . . . . . . 7 ( 0𝑋 → (( I ↾ 𝑋)‘ 0 ) = 0 )
196, 18syl 17 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → (( I ↾ 𝑋)‘ 0 ) = 0 )
2017, 19syl5eqr 2870 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → ((0g𝐻)‘ 0 ) = 0 )
2112, 20eqeq12d 2837 . . . 4 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → (((𝐹𝑥)‘ 0 ) = ((0g𝐻)‘ 0 ) ↔ 𝑥 = 0 ))
221, 21syl5ib 246 . . 3 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → ((𝐹𝑥) = (0g𝐻) → 𝑥 = 0 ))
2322ralrimiva 3182 . 2 (𝐺 ∈ Grp → ∀𝑥𝑋 ((𝐹𝑥) = (0g𝐻) → 𝑥 = 0 ))
24 cayleylem1.s . . . 4 𝑆 = (Base‘𝐻)
253, 10, 4, 14, 24, 7cayleylem1 18540 . . 3 (𝐺 ∈ Grp → 𝐹 ∈ (𝐺 GrpHom 𝐻))
26 eqid 2821 . . . 4 (0g𝐻) = (0g𝐻)
273, 24, 4, 26ghmf1 18387 . . 3 (𝐹 ∈ (𝐺 GrpHom 𝐻) → (𝐹:𝑋1-1𝑆 ↔ ∀𝑥𝑋 ((𝐹𝑥) = (0g𝐻) → 𝑥 = 0 )))
2825, 27syl 17 . 2 (𝐺 ∈ Grp → (𝐹:𝑋1-1𝑆 ↔ ∀𝑥𝑋 ((𝐹𝑥) = (0g𝐻) → 𝑥 = 0 )))
2923, 28mpbird 259 1 (𝐺 ∈ Grp → 𝐹:𝑋1-1𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3138  Vcvv 3494  cmpt 5146   I cid 5459  cres 5557  1-1wf1 6352  cfv 6355  (class class class)co 7156  Basecbs 16483  +gcplusg 16565  0gc0g 16713  Grpcgrp 18103   GrpHom cghm 18355  SymGrpcsymg 18495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-uz 12245  df-fz 12894  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-tset 16584  df-0g 16715  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-efmnd 18034  df-grp 18106  df-minusg 18107  df-sbg 18108  df-subg 18276  df-ghm 18356  df-ga 18420  df-symg 18496
This theorem is referenced by:  cayley  18542
  Copyright terms: Public domain W3C validator