Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cayleylem2 Structured version   Visualization version   GIF version

Theorem cayleylem2 18053
 Description: Lemma for cayley 18054. (Contributed by Paul Chapman, 3-Mar-2008.) (Revised by Mario Carneiro, 13-Jan-2015.)
Hypotheses
Ref Expression
cayleylem1.x 𝑋 = (Base‘𝐺)
cayleylem1.p + = (+g𝐺)
cayleylem1.u 0 = (0g𝐺)
cayleylem1.h 𝐻 = (SymGrp‘𝑋)
cayleylem1.s 𝑆 = (Base‘𝐻)
cayleylem1.f 𝐹 = (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔 + 𝑎)))
Assertion
Ref Expression
cayleylem2 (𝐺 ∈ Grp → 𝐹:𝑋1-1𝑆)
Distinct variable groups:   𝑔,𝑎, +   𝐺,𝑎,𝑔   𝑔,𝐻   𝑋,𝑎,𝑔   0 ,𝑎
Allowed substitution hints:   𝑆(𝑔,𝑎)   𝐹(𝑔,𝑎)   𝐻(𝑎)   0 (𝑔)

Proof of Theorem cayleylem2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fveq1 6352 . . . 4 ((𝐹𝑥) = (0g𝐻) → ((𝐹𝑥)‘ 0 ) = ((0g𝐻)‘ 0 ))
2 simpr 479 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → 𝑥𝑋)
3 cayleylem1.x . . . . . . . . 9 𝑋 = (Base‘𝐺)
4 cayleylem1.u . . . . . . . . 9 0 = (0g𝐺)
53, 4grpidcl 17671 . . . . . . . 8 (𝐺 ∈ Grp → 0𝑋)
65adantr 472 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → 0𝑋)
7 cayleylem1.f . . . . . . . 8 𝐹 = (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔 + 𝑎)))
87, 3grplactval 17738 . . . . . . 7 ((𝑥𝑋0𝑋) → ((𝐹𝑥)‘ 0 ) = (𝑥 + 0 ))
92, 6, 8syl2anc 696 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → ((𝐹𝑥)‘ 0 ) = (𝑥 + 0 ))
10 cayleylem1.p . . . . . . 7 + = (+g𝐺)
113, 10, 4grprid 17674 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → (𝑥 + 0 ) = 𝑥)
129, 11eqtrd 2794 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → ((𝐹𝑥)‘ 0 ) = 𝑥)
13 fvex 6363 . . . . . . . . 9 (Base‘𝐺) ∈ V
143, 13eqeltri 2835 . . . . . . . 8 𝑋 ∈ V
15 cayleylem1.h . . . . . . . . 9 𝐻 = (SymGrp‘𝑋)
1615symgid 18041 . . . . . . . 8 (𝑋 ∈ V → ( I ↾ 𝑋) = (0g𝐻))
1714, 16ax-mp 5 . . . . . . 7 ( I ↾ 𝑋) = (0g𝐻)
1817fveq1i 6354 . . . . . 6 (( I ↾ 𝑋)‘ 0 ) = ((0g𝐻)‘ 0 )
19 fvresi 6604 . . . . . . 7 ( 0𝑋 → (( I ↾ 𝑋)‘ 0 ) = 0 )
206, 19syl 17 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → (( I ↾ 𝑋)‘ 0 ) = 0 )
2118, 20syl5eqr 2808 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → ((0g𝐻)‘ 0 ) = 0 )
2212, 21eqeq12d 2775 . . . 4 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → (((𝐹𝑥)‘ 0 ) = ((0g𝐻)‘ 0 ) ↔ 𝑥 = 0 ))
231, 22syl5ib 234 . . 3 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → ((𝐹𝑥) = (0g𝐻) → 𝑥 = 0 ))
2423ralrimiva 3104 . 2 (𝐺 ∈ Grp → ∀𝑥𝑋 ((𝐹𝑥) = (0g𝐻) → 𝑥 = 0 ))
25 cayleylem1.s . . . 4 𝑆 = (Base‘𝐻)
263, 10, 4, 15, 25, 7cayleylem1 18052 . . 3 (𝐺 ∈ Grp → 𝐹 ∈ (𝐺 GrpHom 𝐻))
27 eqid 2760 . . . 4 (0g𝐻) = (0g𝐻)
283, 25, 4, 27ghmf1 17910 . . 3 (𝐹 ∈ (𝐺 GrpHom 𝐻) → (𝐹:𝑋1-1𝑆 ↔ ∀𝑥𝑋 ((𝐹𝑥) = (0g𝐻) → 𝑥 = 0 )))
2926, 28syl 17 . 2 (𝐺 ∈ Grp → (𝐹:𝑋1-1𝑆 ↔ ∀𝑥𝑋 ((𝐹𝑥) = (0g𝐻) → 𝑥 = 0 )))
3024, 29mpbird 247 1 (𝐺 ∈ Grp → 𝐹:𝑋1-1𝑆)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1632   ∈ wcel 2139  ∀wral 3050  Vcvv 3340   ↦ cmpt 4881   I cid 5173   ↾ cres 5268  –1-1→wf1 6046  ‘cfv 6049  (class class class)co 6814  Basecbs 16079  +gcplusg 16163  0gc0g 16322  Grpcgrp 17643   GrpHom cghm 17878  SymGrpcsymg 18017 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-oadd 7734  df-er 7913  df-map 8027  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-nn 11233  df-2 11291  df-3 11292  df-4 11293  df-5 11294  df-6 11295  df-7 11296  df-8 11297  df-9 11298  df-n0 11505  df-z 11590  df-uz 11900  df-fz 12540  df-struct 16081  df-ndx 16082  df-slot 16083  df-base 16085  df-sets 16086  df-ress 16087  df-plusg 16176  df-tset 16182  df-0g 16324  df-mgm 17463  df-sgrp 17505  df-mnd 17516  df-grp 17646  df-minusg 17647  df-sbg 17648  df-subg 17812  df-ghm 17879  df-ga 17943  df-symg 18018 This theorem is referenced by:  cayley  18054
 Copyright terms: Public domain W3C validator