MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfilresi Structured version   Visualization version   GIF version

Theorem cfilresi 23033
Description: A Cauchy filter on a metric subspace extends to a Cauchy filter in the larger space. (Contributed by Mario Carneiro, 15-Oct-2015.)
Assertion
Ref Expression
cfilresi ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → (𝑋filGen𝐹) ∈ (CauFil‘𝐷))

Proof of Theorem cfilresi
Dummy variables 𝑢 𝑣 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xmetres 22109 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘(𝑋𝑌)))
2 iscfil2 23004 . . . . 5 ((𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘(𝑋𝑌)) → (𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌))) ↔ (𝐹 ∈ (Fil‘(𝑋𝑌)) ∧ ∀𝑥 ∈ ℝ+𝑦𝐹𝑢𝑦𝑣𝑦 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥)))
32simplbda 653 . . . 4 (((𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘(𝑋𝑌)) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → ∀𝑥 ∈ ℝ+𝑦𝐹𝑢𝑦𝑣𝑦 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥)
41, 3sylan 488 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → ∀𝑥 ∈ ℝ+𝑦𝐹𝑢𝑦𝑣𝑦 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥)
5 cfilfil 23005 . . . . . . . . . . . . 13 (((𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘(𝑋𝑌)) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝐹 ∈ (Fil‘(𝑋𝑌)))
61, 5sylan 488 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝐹 ∈ (Fil‘(𝑋𝑌)))
7 filelss 21596 . . . . . . . . . . . 12 ((𝐹 ∈ (Fil‘(𝑋𝑌)) ∧ 𝑦𝐹) → 𝑦 ⊆ (𝑋𝑌))
86, 7sylan 488 . . . . . . . . . . 11 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) ∧ 𝑦𝐹) → 𝑦 ⊆ (𝑋𝑌))
9 inss2 3818 . . . . . . . . . . 11 (𝑋𝑌) ⊆ 𝑌
108, 9syl6ss 3600 . . . . . . . . . 10 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) ∧ 𝑦𝐹) → 𝑦𝑌)
1110sselda 3588 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) ∧ 𝑦𝐹) ∧ 𝑢𝑦) → 𝑢𝑌)
1210sselda 3588 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) ∧ 𝑦𝐹) ∧ 𝑣𝑦) → 𝑣𝑌)
1311, 12anim12dan 881 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) ∧ 𝑦𝐹) ∧ (𝑢𝑦𝑣𝑦)) → (𝑢𝑌𝑣𝑌))
14 ovres 6765 . . . . . . . 8 ((𝑢𝑌𝑣𝑌) → (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) = (𝑢𝐷𝑣))
1513, 14syl 17 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) ∧ 𝑦𝐹) ∧ (𝑢𝑦𝑣𝑦)) → (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) = (𝑢𝐷𝑣))
1615breq1d 4633 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) ∧ 𝑦𝐹) ∧ (𝑢𝑦𝑣𝑦)) → ((𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥 ↔ (𝑢𝐷𝑣) < 𝑥))
17162ralbidva 2984 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) ∧ 𝑦𝐹) → (∀𝑢𝑦𝑣𝑦 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥 ↔ ∀𝑢𝑦𝑣𝑦 (𝑢𝐷𝑣) < 𝑥))
1817rexbidva 3044 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → (∃𝑦𝐹𝑢𝑦𝑣𝑦 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥 ↔ ∃𝑦𝐹𝑢𝑦𝑣𝑦 (𝑢𝐷𝑣) < 𝑥))
1918ralbidv 2982 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → (∀𝑥 ∈ ℝ+𝑦𝐹𝑢𝑦𝑣𝑦 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥 ↔ ∀𝑥 ∈ ℝ+𝑦𝐹𝑢𝑦𝑣𝑦 (𝑢𝐷𝑣) < 𝑥))
204, 19mpbid 222 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → ∀𝑥 ∈ ℝ+𝑦𝐹𝑢𝑦𝑣𝑦 (𝑢𝐷𝑣) < 𝑥)
21 filfbas 21592 . . . . 5 (𝐹 ∈ (Fil‘(𝑋𝑌)) → 𝐹 ∈ (fBas‘(𝑋𝑌)))
226, 21syl 17 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝐹 ∈ (fBas‘(𝑋𝑌)))
23 filsspw 21595 . . . . . 6 (𝐹 ∈ (Fil‘(𝑋𝑌)) → 𝐹 ⊆ 𝒫 (𝑋𝑌))
246, 23syl 17 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝐹 ⊆ 𝒫 (𝑋𝑌))
25 inss1 3817 . . . . . 6 (𝑋𝑌) ⊆ 𝑋
26 sspwb 4888 . . . . . 6 ((𝑋𝑌) ⊆ 𝑋 ↔ 𝒫 (𝑋𝑌) ⊆ 𝒫 𝑋)
2725, 26mpbi 220 . . . . 5 𝒫 (𝑋𝑌) ⊆ 𝒫 𝑋
2824, 27syl6ss 3600 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝐹 ⊆ 𝒫 𝑋)
29 elfvdm 6187 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met)
3029adantr 481 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝑋 ∈ dom ∞Met)
31 fbasweak 21609 . . . 4 ((𝐹 ∈ (fBas‘(𝑋𝑌)) ∧ 𝐹 ⊆ 𝒫 𝑋𝑋 ∈ dom ∞Met) → 𝐹 ∈ (fBas‘𝑋))
3222, 28, 30, 31syl3anc 1323 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝐹 ∈ (fBas‘𝑋))
33 fgcfil 23009 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (fBas‘𝑋)) → ((𝑋filGen𝐹) ∈ (CauFil‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑦𝐹𝑢𝑦𝑣𝑦 (𝑢𝐷𝑣) < 𝑥))
3432, 33syldan 487 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → ((𝑋filGen𝐹) ∈ (CauFil‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑦𝐹𝑢𝑦𝑣𝑦 (𝑢𝐷𝑣) < 𝑥))
3520, 34mpbird 247 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → (𝑋filGen𝐹) ∈ (CauFil‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wral 2908  wrex 2909  cin 3559  wss 3560  𝒫 cpw 4136   class class class wbr 4623   × cxp 5082  dom cdm 5084  cres 5086  cfv 5857  (class class class)co 6615   < clt 10034  +crp 11792  ∞Metcxmt 19671  fBascfbas 19674  filGencfg 19675  Filcfil 21589  CauFilccfil 22990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-op 4162  df-uni 4410  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-id 4999  df-po 5005  df-so 5006  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-1st 7128  df-2nd 7129  df-er 7702  df-map 7819  df-en 7916  df-dom 7917  df-sdom 7918  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-div 10645  df-2 11039  df-rp 11793  df-xneg 11906  df-xadd 11907  df-xmul 11908  df-ico 12139  df-xmet 19679  df-fbas 19683  df-fg 19684  df-fil 21590  df-cfil 22993
This theorem is referenced by:  cfilres  23034  cmetss  23053
  Copyright terms: Public domain W3C validator