Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmetss Structured version   Visualization version   GIF version

Theorem cmetss 23333
 Description: A subspace of a complete metric space is complete iff it is closed in the parent space. Theorem 1.4-7 of [Kreyszig] p. 30. (Contributed by NM, 28-Jan-2008.) (Revised by Mario Carneiro, 15-Oct-2015.)
Hypothesis
Ref Expression
cmetss.2 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
cmetss (𝐷 ∈ (CMet‘𝑋) → ((𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌) ↔ 𝑌 ∈ (Clsd‘𝐽)))

Proof of Theorem cmetss
Dummy variables 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cmetmet 23304 . . . . . . . . 9 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))
2 metxmet 22360 . . . . . . . . 9 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
31, 2syl 17 . . . . . . . 8 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
43adantr 472 . . . . . . 7 ((𝐷 ∈ (CMet‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) → 𝐷 ∈ (∞Met‘𝑋))
5 cmetss.2 . . . . . . . 8 𝐽 = (MetOpen‘𝐷)
65mopntopon 22465 . . . . . . 7 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
74, 6syl 17 . . . . . 6 ((𝐷 ∈ (CMet‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) → 𝐽 ∈ (TopOn‘𝑋))
8 resss 5580 . . . . . . . 8 (𝐷 ↾ (𝑌 × 𝑌)) ⊆ 𝐷
9 dmss 5478 . . . . . . . 8 ((𝐷 ↾ (𝑌 × 𝑌)) ⊆ 𝐷 → dom (𝐷 ↾ (𝑌 × 𝑌)) ⊆ dom 𝐷)
10 dmss 5478 . . . . . . . 8 (dom (𝐷 ↾ (𝑌 × 𝑌)) ⊆ dom 𝐷 → dom dom (𝐷 ↾ (𝑌 × 𝑌)) ⊆ dom dom 𝐷)
118, 9, 10mp2b 10 . . . . . . 7 dom dom (𝐷 ↾ (𝑌 × 𝑌)) ⊆ dom dom 𝐷
12 cmetmet 23304 . . . . . . . . 9 ((𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (Met‘𝑌))
13 metdmdm 22362 . . . . . . . . 9 ((𝐷 ↾ (𝑌 × 𝑌)) ∈ (Met‘𝑌) → 𝑌 = dom dom (𝐷 ↾ (𝑌 × 𝑌)))
1412, 13syl 17 . . . . . . . 8 ((𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌) → 𝑌 = dom dom (𝐷 ↾ (𝑌 × 𝑌)))
15 metdmdm 22362 . . . . . . . . 9 (𝐷 ∈ (Met‘𝑋) → 𝑋 = dom dom 𝐷)
161, 15syl 17 . . . . . . . 8 (𝐷 ∈ (CMet‘𝑋) → 𝑋 = dom dom 𝐷)
17 sseq12 3769 . . . . . . . 8 ((𝑌 = dom dom (𝐷 ↾ (𝑌 × 𝑌)) ∧ 𝑋 = dom dom 𝐷) → (𝑌𝑋 ↔ dom dom (𝐷 ↾ (𝑌 × 𝑌)) ⊆ dom dom 𝐷))
1814, 16, 17syl2anr 496 . . . . . . 7 ((𝐷 ∈ (CMet‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) → (𝑌𝑋 ↔ dom dom (𝐷 ↾ (𝑌 × 𝑌)) ⊆ dom dom 𝐷))
1911, 18mpbiri 248 . . . . . 6 ((𝐷 ∈ (CMet‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) → 𝑌𝑋)
20 flimcls 22010 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌𝑋) → (𝑥 ∈ ((cls‘𝐽)‘𝑌) ↔ ∃𝑓 ∈ (Fil‘𝑋)(𝑌𝑓𝑥 ∈ (𝐽 fLim 𝑓))))
217, 19, 20syl2anc 696 . . . . 5 ((𝐷 ∈ (CMet‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) → (𝑥 ∈ ((cls‘𝐽)‘𝑌) ↔ ∃𝑓 ∈ (Fil‘𝑋)(𝑌𝑓𝑥 ∈ (𝐽 fLim 𝑓))))
22 simprrr 824 . . . . . . 7 (((𝐷 ∈ (CMet‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑌𝑓𝑥 ∈ (𝐽 fLim 𝑓)))) → 𝑥 ∈ (𝐽 fLim 𝑓))
234adantr 472 . . . . . . . . 9 (((𝐷 ∈ (CMet‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑌𝑓𝑥 ∈ (𝐽 fLim 𝑓)))) → 𝐷 ∈ (∞Met‘𝑋))
245methaus 22546 . . . . . . . . 9 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Haus)
25 hausflimi 22005 . . . . . . . . 9 (𝐽 ∈ Haus → ∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓))
2623, 24, 253syl 18 . . . . . . . 8 (((𝐷 ∈ (CMet‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑌𝑓𝑥 ∈ (𝐽 fLim 𝑓)))) → ∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓))
2723, 6syl 17 . . . . . . . . . . . 12 (((𝐷 ∈ (CMet‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑌𝑓𝑥 ∈ (𝐽 fLim 𝑓)))) → 𝐽 ∈ (TopOn‘𝑋))
28 simprl 811 . . . . . . . . . . . 12 (((𝐷 ∈ (CMet‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑌𝑓𝑥 ∈ (𝐽 fLim 𝑓)))) → 𝑓 ∈ (Fil‘𝑋))
29 simprrl 823 . . . . . . . . . . . 12 (((𝐷 ∈ (CMet‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑌𝑓𝑥 ∈ (𝐽 fLim 𝑓)))) → 𝑌𝑓)
30 flimrest 22008 . . . . . . . . . . . 12 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑓 ∈ (Fil‘𝑋) ∧ 𝑌𝑓) → ((𝐽t 𝑌) fLim (𝑓t 𝑌)) = ((𝐽 fLim 𝑓) ∩ 𝑌))
3127, 28, 29, 30syl3anc 1477 . . . . . . . . . . 11 (((𝐷 ∈ (CMet‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑌𝑓𝑥 ∈ (𝐽 fLim 𝑓)))) → ((𝐽t 𝑌) fLim (𝑓t 𝑌)) = ((𝐽 fLim 𝑓) ∩ 𝑌))
3219adantr 472 . . . . . . . . . . . . 13 (((𝐷 ∈ (CMet‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑌𝑓𝑥 ∈ (𝐽 fLim 𝑓)))) → 𝑌𝑋)
33 eqid 2760 . . . . . . . . . . . . . 14 (𝐷 ↾ (𝑌 × 𝑌)) = (𝐷 ↾ (𝑌 × 𝑌))
34 eqid 2760 . . . . . . . . . . . . . 14 (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) = (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌)))
3533, 5, 34metrest 22550 . . . . . . . . . . . . 13 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) → (𝐽t 𝑌) = (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))
3623, 32, 35syl2anc 696 . . . . . . . . . . . 12 (((𝐷 ∈ (CMet‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑌𝑓𝑥 ∈ (𝐽 fLim 𝑓)))) → (𝐽t 𝑌) = (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))
3736oveq1d 6829 . . . . . . . . . . 11 (((𝐷 ∈ (CMet‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑌𝑓𝑥 ∈ (𝐽 fLim 𝑓)))) → ((𝐽t 𝑌) fLim (𝑓t 𝑌)) = ((MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) fLim (𝑓t 𝑌)))
3831, 37eqtr3d 2796 . . . . . . . . . 10 (((𝐷 ∈ (CMet‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑌𝑓𝑥 ∈ (𝐽 fLim 𝑓)))) → ((𝐽 fLim 𝑓) ∩ 𝑌) = ((MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) fLim (𝑓t 𝑌)))
39 simplr 809 . . . . . . . . . . 11 (((𝐷 ∈ (CMet‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑌𝑓𝑥 ∈ (𝐽 fLim 𝑓)))) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌))
405flimcfil 23332 . . . . . . . . . . . . 13 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ (𝐽 fLim 𝑓)) → 𝑓 ∈ (CauFil‘𝐷))
4123, 22, 40syl2anc 696 . . . . . . . . . . . 12 (((𝐷 ∈ (CMet‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑌𝑓𝑥 ∈ (𝐽 fLim 𝑓)))) → 𝑓 ∈ (CauFil‘𝐷))
42 cfilres 23314 . . . . . . . . . . . . 13 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓 ∈ (Fil‘𝑋) ∧ 𝑌𝑓) → (𝑓 ∈ (CauFil‘𝐷) ↔ (𝑓t 𝑌) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))))
4323, 28, 29, 42syl3anc 1477 . . . . . . . . . . . 12 (((𝐷 ∈ (CMet‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑌𝑓𝑥 ∈ (𝐽 fLim 𝑓)))) → (𝑓 ∈ (CauFil‘𝐷) ↔ (𝑓t 𝑌) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))))
4441, 43mpbid 222 . . . . . . . . . . 11 (((𝐷 ∈ (CMet‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑌𝑓𝑥 ∈ (𝐽 fLim 𝑓)))) → (𝑓t 𝑌) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌))))
4534cmetcvg 23303 . . . . . . . . . . 11 (((𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌) ∧ (𝑓t 𝑌) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → ((MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) fLim (𝑓t 𝑌)) ≠ ∅)
4639, 44, 45syl2anc 696 . . . . . . . . . 10 (((𝐷 ∈ (CMet‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑌𝑓𝑥 ∈ (𝐽 fLim 𝑓)))) → ((MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) fLim (𝑓t 𝑌)) ≠ ∅)
4738, 46eqnetrd 2999 . . . . . . . . 9 (((𝐷 ∈ (CMet‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑌𝑓𝑥 ∈ (𝐽 fLim 𝑓)))) → ((𝐽 fLim 𝑓) ∩ 𝑌) ≠ ∅)
48 n0 4074 . . . . . . . . . 10 (((𝐽 fLim 𝑓) ∩ 𝑌) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ ((𝐽 fLim 𝑓) ∩ 𝑌))
49 elin 3939 . . . . . . . . . . 11 (𝑥 ∈ ((𝐽 fLim 𝑓) ∩ 𝑌) ↔ (𝑥 ∈ (𝐽 fLim 𝑓) ∧ 𝑥𝑌))
5049exbii 1923 . . . . . . . . . 10 (∃𝑥 𝑥 ∈ ((𝐽 fLim 𝑓) ∩ 𝑌) ↔ ∃𝑥(𝑥 ∈ (𝐽 fLim 𝑓) ∧ 𝑥𝑌))
5148, 50bitri 264 . . . . . . . . 9 (((𝐽 fLim 𝑓) ∩ 𝑌) ≠ ∅ ↔ ∃𝑥(𝑥 ∈ (𝐽 fLim 𝑓) ∧ 𝑥𝑌))
5247, 51sylib 208 . . . . . . . 8 (((𝐷 ∈ (CMet‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑌𝑓𝑥 ∈ (𝐽 fLim 𝑓)))) → ∃𝑥(𝑥 ∈ (𝐽 fLim 𝑓) ∧ 𝑥𝑌))
53 mopick 2673 . . . . . . . 8 ((∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓) ∧ ∃𝑥(𝑥 ∈ (𝐽 fLim 𝑓) ∧ 𝑥𝑌)) → (𝑥 ∈ (𝐽 fLim 𝑓) → 𝑥𝑌))
5426, 52, 53syl2anc 696 . . . . . . 7 (((𝐷 ∈ (CMet‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑌𝑓𝑥 ∈ (𝐽 fLim 𝑓)))) → (𝑥 ∈ (𝐽 fLim 𝑓) → 𝑥𝑌))
5522, 54mpd 15 . . . . . 6 (((𝐷 ∈ (CMet‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑌𝑓𝑥 ∈ (𝐽 fLim 𝑓)))) → 𝑥𝑌)
5655rexlimdvaa 3170 . . . . 5 ((𝐷 ∈ (CMet‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) → (∃𝑓 ∈ (Fil‘𝑋)(𝑌𝑓𝑥 ∈ (𝐽 fLim 𝑓)) → 𝑥𝑌))
5721, 56sylbid 230 . . . 4 ((𝐷 ∈ (CMet‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) → (𝑥 ∈ ((cls‘𝐽)‘𝑌) → 𝑥𝑌))
5857ssrdv 3750 . . 3 ((𝐷 ∈ (CMet‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) → ((cls‘𝐽)‘𝑌) ⊆ 𝑌)
595mopntop 22466 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top)
604, 59syl 17 . . . 4 ((𝐷 ∈ (CMet‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) → 𝐽 ∈ Top)
615mopnuni 22467 . . . . . 6 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
624, 61syl 17 . . . . 5 ((𝐷 ∈ (CMet‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) → 𝑋 = 𝐽)
6319, 62sseqtrd 3782 . . . 4 ((𝐷 ∈ (CMet‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) → 𝑌 𝐽)
64 eqid 2760 . . . . 5 𝐽 = 𝐽
6564iscld4 21091 . . . 4 ((𝐽 ∈ Top ∧ 𝑌 𝐽) → (𝑌 ∈ (Clsd‘𝐽) ↔ ((cls‘𝐽)‘𝑌) ⊆ 𝑌))
6660, 63, 65syl2anc 696 . . 3 ((𝐷 ∈ (CMet‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) → (𝑌 ∈ (Clsd‘𝐽) ↔ ((cls‘𝐽)‘𝑌) ⊆ 𝑌))
6758, 66mpbird 247 . 2 ((𝐷 ∈ (CMet‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) → 𝑌 ∈ (Clsd‘𝐽))
681adantr 472 . . . 4 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝐷 ∈ (Met‘𝑋))
6964cldss 21055 . . . . . 6 (𝑌 ∈ (Clsd‘𝐽) → 𝑌 𝐽)
7069adantl 473 . . . . 5 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝑌 𝐽)
7168, 2, 613syl 18 . . . . 5 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝑋 = 𝐽)
7270, 71sseqtr4d 3783 . . . 4 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝑌𝑋)
73 metres2 22389 . . . 4 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑌𝑋) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (Met‘𝑌))
7468, 72, 73syl2anc 696 . . 3 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (Met‘𝑌))
753ad2antrr 764 . . . . . . . . 9 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝐷 ∈ (∞Met‘𝑋))
7672adantr 472 . . . . . . . . 9 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝑌𝑋)
7775, 76, 35syl2anc 696 . . . . . . . 8 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → (𝐽t 𝑌) = (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))
7877eqcomd 2766 . . . . . . 7 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) = (𝐽t 𝑌))
79 metxmet 22360 . . . . . . . . . . 11 ((𝐷 ↾ (𝑌 × 𝑌)) ∈ (Met‘𝑌) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌))
8074, 79syl 17 . . . . . . . . . 10 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌))
81 cfilfil 23285 . . . . . . . . . 10 (((𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝑓 ∈ (Fil‘𝑌))
8280, 81sylan 489 . . . . . . . . 9 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝑓 ∈ (Fil‘𝑌))
83 elfvdm 6382 . . . . . . . . . 10 (𝐷 ∈ (CMet‘𝑋) → 𝑋 ∈ dom CMet)
8483ad2antrr 764 . . . . . . . . 9 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝑋 ∈ dom CMet)
85 trfg 21916 . . . . . . . . 9 ((𝑓 ∈ (Fil‘𝑌) ∧ 𝑌𝑋𝑋 ∈ dom CMet) → ((𝑋filGen𝑓) ↾t 𝑌) = 𝑓)
8682, 76, 84, 85syl3anc 1477 . . . . . . . 8 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → ((𝑋filGen𝑓) ↾t 𝑌) = 𝑓)
8786eqcomd 2766 . . . . . . 7 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝑓 = ((𝑋filGen𝑓) ↾t 𝑌))
8878, 87oveq12d 6832 . . . . . 6 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → ((MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) fLim 𝑓) = ((𝐽t 𝑌) fLim ((𝑋filGen𝑓) ↾t 𝑌)))
8975, 6syl 17 . . . . . . 7 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝐽 ∈ (TopOn‘𝑋))
90 filfbas 21873 . . . . . . . . . 10 (𝑓 ∈ (Fil‘𝑌) → 𝑓 ∈ (fBas‘𝑌))
9182, 90syl 17 . . . . . . . . 9 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝑓 ∈ (fBas‘𝑌))
92 filsspw 21876 . . . . . . . . . . 11 (𝑓 ∈ (Fil‘𝑌) → 𝑓 ⊆ 𝒫 𝑌)
9382, 92syl 17 . . . . . . . . . 10 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝑓 ⊆ 𝒫 𝑌)
94 sspwb 5066 . . . . . . . . . . 11 (𝑌𝑋 ↔ 𝒫 𝑌 ⊆ 𝒫 𝑋)
9576, 94sylib 208 . . . . . . . . . 10 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝒫 𝑌 ⊆ 𝒫 𝑋)
9693, 95sstrd 3754 . . . . . . . . 9 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝑓 ⊆ 𝒫 𝑋)
97 fbasweak 21890 . . . . . . . . 9 ((𝑓 ∈ (fBas‘𝑌) ∧ 𝑓 ⊆ 𝒫 𝑋𝑋 ∈ dom CMet) → 𝑓 ∈ (fBas‘𝑋))
9891, 96, 84, 97syl3anc 1477 . . . . . . . 8 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝑓 ∈ (fBas‘𝑋))
99 fgcl 21903 . . . . . . . 8 (𝑓 ∈ (fBas‘𝑋) → (𝑋filGen𝑓) ∈ (Fil‘𝑋))
10098, 99syl 17 . . . . . . 7 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → (𝑋filGen𝑓) ∈ (Fil‘𝑋))
101 ssfg 21897 . . . . . . . . 9 (𝑓 ∈ (fBas‘𝑋) → 𝑓 ⊆ (𝑋filGen𝑓))
10298, 101syl 17 . . . . . . . 8 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝑓 ⊆ (𝑋filGen𝑓))
103 filtop 21880 . . . . . . . . 9 (𝑓 ∈ (Fil‘𝑌) → 𝑌𝑓)
10482, 103syl 17 . . . . . . . 8 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝑌𝑓)
105102, 104sseldd 3745 . . . . . . 7 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝑌 ∈ (𝑋filGen𝑓))
106 flimrest 22008 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑋filGen𝑓) ∈ (Fil‘𝑋) ∧ 𝑌 ∈ (𝑋filGen𝑓)) → ((𝐽t 𝑌) fLim ((𝑋filGen𝑓) ↾t 𝑌)) = ((𝐽 fLim (𝑋filGen𝑓)) ∩ 𝑌))
10789, 100, 105, 106syl3anc 1477 . . . . . 6 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → ((𝐽t 𝑌) fLim ((𝑋filGen𝑓) ↾t 𝑌)) = ((𝐽 fLim (𝑋filGen𝑓)) ∩ 𝑌))
108 flimclsi 22003 . . . . . . . . 9 (𝑌 ∈ (𝑋filGen𝑓) → (𝐽 fLim (𝑋filGen𝑓)) ⊆ ((cls‘𝐽)‘𝑌))
109105, 108syl 17 . . . . . . . 8 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → (𝐽 fLim (𝑋filGen𝑓)) ⊆ ((cls‘𝐽)‘𝑌))
110 cldcls 21068 . . . . . . . . 9 (𝑌 ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘𝑌) = 𝑌)
111110ad2antlr 765 . . . . . . . 8 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → ((cls‘𝐽)‘𝑌) = 𝑌)
112109, 111sseqtrd 3782 . . . . . . 7 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → (𝐽 fLim (𝑋filGen𝑓)) ⊆ 𝑌)
113 df-ss 3729 . . . . . . 7 ((𝐽 fLim (𝑋filGen𝑓)) ⊆ 𝑌 ↔ ((𝐽 fLim (𝑋filGen𝑓)) ∩ 𝑌) = (𝐽 fLim (𝑋filGen𝑓)))
114112, 113sylib 208 . . . . . 6 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → ((𝐽 fLim (𝑋filGen𝑓)) ∩ 𝑌) = (𝐽 fLim (𝑋filGen𝑓)))
11588, 107, 1143eqtrd 2798 . . . . 5 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → ((MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) fLim 𝑓) = (𝐽 fLim (𝑋filGen𝑓)))
116 simpll 807 . . . . . 6 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝐷 ∈ (CMet‘𝑋))
11768, 2syl 17 . . . . . . 7 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝐷 ∈ (∞Met‘𝑋))
118 cfilresi 23313 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → (𝑋filGen𝑓) ∈ (CauFil‘𝐷))
119117, 118sylan 489 . . . . . 6 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → (𝑋filGen𝑓) ∈ (CauFil‘𝐷))
1205cmetcvg 23303 . . . . . 6 ((𝐷 ∈ (CMet‘𝑋) ∧ (𝑋filGen𝑓) ∈ (CauFil‘𝐷)) → (𝐽 fLim (𝑋filGen𝑓)) ≠ ∅)
121116, 119, 120syl2anc 696 . . . . 5 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → (𝐽 fLim (𝑋filGen𝑓)) ≠ ∅)
122115, 121eqnetrd 2999 . . . 4 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → ((MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) fLim 𝑓) ≠ ∅)
123122ralrimiva 3104 . . 3 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) → ∀𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))((MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) fLim 𝑓) ≠ ∅)
12434iscmet 23302 . . 3 ((𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌) ↔ ((𝐷 ↾ (𝑌 × 𝑌)) ∈ (Met‘𝑌) ∧ ∀𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))((MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) fLim 𝑓) ≠ ∅))
12574, 123, 124sylanbrc 701 . 2 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌))
12667, 125impbida 913 1 (𝐷 ∈ (CMet‘𝑋) → ((𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌) ↔ 𝑌 ∈ (Clsd‘𝐽)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1632  ∃wex 1853   ∈ wcel 2139  ∃*wmo 2608   ≠ wne 2932  ∀wral 3050  ∃wrex 3051   ∩ cin 3714   ⊆ wss 3715  ∅c0 4058  𝒫 cpw 4302  ∪ cuni 4588   × cxp 5264  dom cdm 5266   ↾ cres 5268  ‘cfv 6049  (class class class)co 6814   ↾t crest 16303  ∞Metcxmt 19953  Metcme 19954  fBascfbas 19956  filGencfg 19957  MetOpencmopn 19958  Topctop 20920  TopOnctopon 20937  Clsdccld 21042  clsccl 21044  Hauscha 21334  Filcfil 21870   fLim cflim 21959  CauFilccfil 23270  CMetcms 23272 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-oadd 7734  df-er 7913  df-map 8027  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-fi 8484  df-sup 8515  df-inf 8516  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-2 11291  df-n0 11505  df-z 11590  df-uz 11900  df-q 12002  df-rp 12046  df-xneg 12159  df-xadd 12160  df-xmul 12161  df-ico 12394  df-icc 12395  df-rest 16305  df-topgen 16326  df-psmet 19960  df-xmet 19961  df-met 19962  df-bl 19963  df-mopn 19964  df-fbas 19965  df-fg 19966  df-top 20921  df-topon 20938  df-bases 20972  df-cld 21045  df-ntr 21046  df-cls 21047  df-nei 21124  df-haus 21341  df-fil 21871  df-flim 21964  df-cfil 23273  df-cmet 23275 This theorem is referenced by:  recmet  23340  cmsss  23367  bnsscmcl  28054  rrnheibor  33967
 Copyright terms: Public domain W3C validator