Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climaddf Structured version   Visualization version   GIF version

Theorem climaddf 39647
Description: A version of climadd 14343 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
climaddf.1 𝑘𝜑
climaddf.2 𝑘𝐹
climaddf.3 𝑘𝐺
climaddf.4 𝑘𝐻
climaddf.5 𝑍 = (ℤ𝑀)
climaddf.6 (𝜑𝑀 ∈ ℤ)
climaddf.7 (𝜑𝐹𝐴)
climaddf.8 (𝜑𝐻𝑋)
climaddf.9 (𝜑𝐺𝐵)
climaddf.10 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
climaddf.11 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
climaddf.12 ((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘) + (𝐺𝑘)))
Assertion
Ref Expression
climaddf (𝜑𝐻 ⇝ (𝐴 + 𝐵))
Distinct variable group:   𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐵(𝑘)   𝐹(𝑘)   𝐺(𝑘)   𝐻(𝑘)   𝑀(𝑘)   𝑋(𝑘)

Proof of Theorem climaddf
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 climaddf.5 . 2 𝑍 = (ℤ𝑀)
2 climaddf.6 . 2 (𝜑𝑀 ∈ ℤ)
3 climaddf.7 . 2 (𝜑𝐹𝐴)
4 climaddf.8 . 2 (𝜑𝐻𝑋)
5 climaddf.9 . 2 (𝜑𝐺𝐵)
6 climaddf.1 . . . . 5 𝑘𝜑
7 nfv 1841 . . . . 5 𝑘 𝑗𝑍
86, 7nfan 1826 . . . 4 𝑘(𝜑𝑗𝑍)
9 climaddf.2 . . . . . 6 𝑘𝐹
10 nfcv 2762 . . . . . 6 𝑘𝑗
119, 10nffv 6185 . . . . 5 𝑘(𝐹𝑗)
1211nfel1 2776 . . . 4 𝑘(𝐹𝑗) ∈ ℂ
138, 12nfim 1823 . . 3 𝑘((𝜑𝑗𝑍) → (𝐹𝑗) ∈ ℂ)
14 eleq1 2687 . . . . 5 (𝑘 = 𝑗 → (𝑘𝑍𝑗𝑍))
1514anbi2d 739 . . . 4 (𝑘 = 𝑗 → ((𝜑𝑘𝑍) ↔ (𝜑𝑗𝑍)))
16 fveq2 6178 . . . . 5 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
1716eleq1d 2684 . . . 4 (𝑘 = 𝑗 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑗) ∈ ℂ))
1815, 17imbi12d 334 . . 3 (𝑘 = 𝑗 → (((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ) ↔ ((𝜑𝑗𝑍) → (𝐹𝑗) ∈ ℂ)))
19 climaddf.10 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
2013, 18, 19chvar 2260 . 2 ((𝜑𝑗𝑍) → (𝐹𝑗) ∈ ℂ)
21 climaddf.3 . . . . . 6 𝑘𝐺
2221, 10nffv 6185 . . . . 5 𝑘(𝐺𝑗)
2322nfel1 2776 . . . 4 𝑘(𝐺𝑗) ∈ ℂ
248, 23nfim 1823 . . 3 𝑘((𝜑𝑗𝑍) → (𝐺𝑗) ∈ ℂ)
25 fveq2 6178 . . . . 5 (𝑘 = 𝑗 → (𝐺𝑘) = (𝐺𝑗))
2625eleq1d 2684 . . . 4 (𝑘 = 𝑗 → ((𝐺𝑘) ∈ ℂ ↔ (𝐺𝑗) ∈ ℂ))
2715, 26imbi12d 334 . . 3 (𝑘 = 𝑗 → (((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ) ↔ ((𝜑𝑗𝑍) → (𝐺𝑗) ∈ ℂ)))
28 climaddf.11 . . 3 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
2924, 27, 28chvar 2260 . 2 ((𝜑𝑗𝑍) → (𝐺𝑗) ∈ ℂ)
30 climaddf.4 . . . . . 6 𝑘𝐻
3130, 10nffv 6185 . . . . 5 𝑘(𝐻𝑗)
32 nfcv 2762 . . . . . 6 𝑘 +
3311, 32, 22nfov 6661 . . . . 5 𝑘((𝐹𝑗) + (𝐺𝑗))
3431, 33nfeq 2773 . . . 4 𝑘(𝐻𝑗) = ((𝐹𝑗) + (𝐺𝑗))
358, 34nfim 1823 . . 3 𝑘((𝜑𝑗𝑍) → (𝐻𝑗) = ((𝐹𝑗) + (𝐺𝑗)))
36 fveq2 6178 . . . . 5 (𝑘 = 𝑗 → (𝐻𝑘) = (𝐻𝑗))
3716, 25oveq12d 6653 . . . . 5 (𝑘 = 𝑗 → ((𝐹𝑘) + (𝐺𝑘)) = ((𝐹𝑗) + (𝐺𝑗)))
3836, 37eqeq12d 2635 . . . 4 (𝑘 = 𝑗 → ((𝐻𝑘) = ((𝐹𝑘) + (𝐺𝑘)) ↔ (𝐻𝑗) = ((𝐹𝑗) + (𝐺𝑗))))
3915, 38imbi12d 334 . . 3 (𝑘 = 𝑗 → (((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘) + (𝐺𝑘))) ↔ ((𝜑𝑗𝑍) → (𝐻𝑗) = ((𝐹𝑗) + (𝐺𝑗)))))
40 climaddf.12 . . 3 ((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘) + (𝐺𝑘)))
4135, 39, 40chvar 2260 . 2 ((𝜑𝑗𝑍) → (𝐻𝑗) = ((𝐹𝑗) + (𝐺𝑗)))
421, 2, 3, 4, 5, 20, 29, 41climadd 14343 1 (𝜑𝐻 ⇝ (𝐴 + 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1481  wnf 1706  wcel 1988  wnfc 2749   class class class wbr 4644  cfv 5876  (class class class)co 6635  cc 9919   + caddc 9924  cz 11362  cuz 11672  cli 14196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998  ax-pre-sup 9999
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-2nd 7154  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-er 7727  df-en 7941  df-dom 7942  df-sdom 7943  df-sup 8333  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-div 10670  df-nn 11006  df-2 11064  df-3 11065  df-n0 11278  df-z 11363  df-uz 11673  df-rp 11818  df-seq 12785  df-exp 12844  df-cj 13820  df-re 13821  df-im 13822  df-sqrt 13956  df-abs 13957  df-clim 14200
This theorem is referenced by:  fourierdlem112  40198
  Copyright terms: Public domain W3C validator