Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem112 Structured version   Visualization version   GIF version

Theorem fourierdlem112 42552
Description: Here abbreviations (local definitions) are introduced to prove the fourier 42559 theorem. (𝑍𝑚) is the mth partial sum of the fourier series. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem112.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem112.d 𝐷 = (𝑚 ∈ ℕ ↦ (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑚) + 1) / (2 · π)), ((sin‘((𝑚 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))))
fourierdlem112.p 𝑃 = (𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑛) = π) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem112.m (𝜑𝑀 ∈ ℕ)
fourierdlem112.q (𝜑𝑄 ∈ (𝑃𝑀))
fourierdlem112.n 𝑁 = ((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)
fourierdlem112.v 𝑉 = (℩𝑓𝑓 Isom < , < ((0...𝑁), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})))
fourierdlem112.x (𝜑𝑋 ∈ ℝ)
fourierdlem112.xran (𝜑𝑋 ∈ ran 𝑉)
fourierdlem112.t 𝑇 = (2 · π)
fourierdlem112.fper ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
fourierdlem112.fcn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
fourierdlem112.c ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐶 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
fourierdlem112.u ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑈 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
fourierdlem112.fdvcn ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
fourierdlem112.e (𝜑𝐸 ∈ (((ℝ D 𝐹) ↾ (-∞(,)𝑋)) lim 𝑋))
fourierdlem112.i (𝜑𝐼 ∈ (((ℝ D 𝐹) ↾ (𝑋(,)+∞)) lim 𝑋))
fourierdlem112.l (𝜑𝐿 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
fourierdlem112.r (𝜑𝑅 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
fourierdlem112.a 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π))
fourierdlem112.b 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π))
fourierdlem112.z 𝑍 = (𝑚 ∈ ℕ ↦ (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))))
fourierdlem112.23 𝑆 = (𝑛 ∈ ℕ ↦ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))))
fourierdlem112.fbd (𝜑 → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ℝ (abs‘(𝐹𝑡)) ≤ 𝑤)
fourierdlem112.fdvbd (𝜑 → ∃𝑧 ∈ ℝ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
fourierdlem112.25 (𝜑𝑋 ∈ ℝ)
Assertion
Ref Expression
fourierdlem112 (𝜑 → (seq1( + , 𝑆) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2)) ∧ (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝐿 + 𝑅) / 2)))
Distinct variable groups:   𝐴,𝑘,𝑚,𝑛   𝐵,𝑘,𝑚,𝑛   𝑡,𝐶,𝑚   𝑥,𝐶,𝑚   𝐷,𝑖,𝑘,𝑚,𝑛,𝑥,𝑦   𝑖,𝐹,𝑡,𝑧   𝑦,𝐹,𝑡,𝑘,𝑚   𝑧,𝑘,𝑚   𝑛,𝐹   𝑤,𝐹,𝑖,𝑡,𝑧   𝑥,𝐹   𝑖,𝐿,𝑡,𝑧,𝑘,𝑚   𝑛,𝐿   𝑤,𝐿   𝑓,𝑀,𝑖,𝑡,𝑦,𝑚   𝑛,𝑀,𝑥   𝑀,𝑝,𝑖,𝑛,𝑦   𝑖,𝑁,𝑡,𝑤,𝑧   𝑓,𝑁,𝑦,𝑚   𝑛,𝑁,𝑝   𝑥,𝑁,𝑓   𝑄,𝑓,𝑖,𝑡,𝑦,𝑘,𝑚   𝑄,𝑛,𝑥   𝑄,𝑝,𝑘   𝑅,𝑖,𝑡,𝑧,𝑘,𝑚   𝑅,𝑛   𝑤,𝑅   𝑇,𝑓,𝑡,𝑦,𝑖,𝑘,𝑚   𝑇,𝑛,𝑥   𝑇,𝑝   𝑡,𝑈,𝑚   𝑥,𝑈   𝑖,𝑉,𝑡,𝑤,𝑧   𝑓,𝑉,𝑘,𝑚   𝑛,𝑉,𝑝   𝑥,𝑉   𝑖,𝑋,𝑡,𝑧   𝑓,𝑋,𝑦,𝑘,𝑚   𝑛,𝑋,𝑝   𝑤,𝑋   𝑥,𝑋   𝑚,𝑍   𝜑,𝑖,𝑡,𝑤,𝑧   𝜑,𝑓,𝑘,𝑚,𝑦   𝜑,𝑛   𝑤,𝑚   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑝)   𝐴(𝑥,𝑦,𝑧,𝑤,𝑡,𝑓,𝑖,𝑝)   𝐵(𝑥,𝑦,𝑧,𝑤,𝑡,𝑓,𝑖,𝑝)   𝐶(𝑦,𝑧,𝑤,𝑓,𝑖,𝑘,𝑛,𝑝)   𝐷(𝑧,𝑤,𝑡,𝑓,𝑝)   𝑃(𝑥,𝑦,𝑧,𝑤,𝑡,𝑓,𝑖,𝑘,𝑚,𝑛,𝑝)   𝑄(𝑧,𝑤)   𝑅(𝑥,𝑦,𝑓,𝑝)   𝑆(𝑥,𝑦,𝑧,𝑤,𝑡,𝑓,𝑖,𝑘,𝑚,𝑛,𝑝)   𝑇(𝑧,𝑤)   𝑈(𝑦,𝑧,𝑤,𝑓,𝑖,𝑘,𝑛,𝑝)   𝐸(𝑥,𝑦,𝑧,𝑤,𝑡,𝑓,𝑖,𝑘,𝑚,𝑛,𝑝)   𝐹(𝑓,𝑝)   𝐼(𝑥,𝑦,𝑧,𝑤,𝑡,𝑓,𝑖,𝑘,𝑚,𝑛,𝑝)   𝐿(𝑥,𝑦,𝑓,𝑝)   𝑀(𝑧,𝑤,𝑘)   𝑁(𝑘)   𝑉(𝑦)   𝑍(𝑥,𝑦,𝑧,𝑤,𝑡,𝑓,𝑖,𝑘,𝑛,𝑝)

Proof of Theorem fourierdlem112
Dummy variables 𝑗 𝑙 𝑎 𝑠 𝑏 𝑒 𝑔 𝑐 𝑢 𝑞 𝑟 𝑣 𝑑 𝑜 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fourierdlem112.23 . . . . 5 𝑆 = (𝑛 ∈ ℕ ↦ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))))
2 fveq2 6670 . . . . . . . 8 (𝑛 = 𝑗 → (𝐴𝑛) = (𝐴𝑗))
3 oveq1 7163 . . . . . . . . 9 (𝑛 = 𝑗 → (𝑛 · 𝑋) = (𝑗 · 𝑋))
43fveq2d 6674 . . . . . . . 8 (𝑛 = 𝑗 → (cos‘(𝑛 · 𝑋)) = (cos‘(𝑗 · 𝑋)))
52, 4oveq12d 7174 . . . . . . 7 (𝑛 = 𝑗 → ((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) = ((𝐴𝑗) · (cos‘(𝑗 · 𝑋))))
6 fveq2 6670 . . . . . . . 8 (𝑛 = 𝑗 → (𝐵𝑛) = (𝐵𝑗))
73fveq2d 6674 . . . . . . . 8 (𝑛 = 𝑗 → (sin‘(𝑛 · 𝑋)) = (sin‘(𝑗 · 𝑋)))
86, 7oveq12d 7174 . . . . . . 7 (𝑛 = 𝑗 → ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))) = ((𝐵𝑗) · (sin‘(𝑗 · 𝑋))))
95, 8oveq12d 7174 . . . . . 6 (𝑛 = 𝑗 → (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))) = (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋)))))
109cbvmptv 5169 . . . . 5 (𝑛 ∈ ℕ ↦ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = (𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋)))))
111, 10eqtri 2844 . . . 4 𝑆 = (𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋)))))
12 seqeq3 13375 . . . 4 (𝑆 = (𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋))))) → seq1( + , 𝑆) = seq1( + , (𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋)))))))
1311, 12mp1i 13 . . 3 (𝜑 → seq1( + , 𝑆) = seq1( + , (𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋)))))))
14 nnuz 12282 . . . . 5 ℕ = (ℤ‘1)
15 1zzd 12014 . . . . 5 (𝜑 → 1 ∈ ℤ)
16 nfv 1915 . . . . . . 7 𝑛𝜑
17 nfcv 2977 . . . . . . . 8 𝑛
18 nfcv 2977 . . . . . . . . 9 𝑛(-π(,)0)
19 nfcv 2977 . . . . . . . . . 10 𝑛(𝐹‘(𝑋 + 𝑠))
20 nfcv 2977 . . . . . . . . . 10 𝑛 ·
21 nfcv 2977 . . . . . . . . . 10 𝑛((𝐷𝑚)‘𝑠)
2219, 20, 21nfov 7186 . . . . . . . . 9 𝑛((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠))
2318, 22nfitg 24375 . . . . . . . 8 𝑛∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠
2417, 23nfmpt 5163 . . . . . . 7 𝑛(𝑚 ∈ ℕ ↦ ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠)
25 nfcv 2977 . . . . . . . . 9 𝑛(0(,)π)
2625, 22nfitg 24375 . . . . . . . 8 𝑛∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠
2717, 26nfmpt 5163 . . . . . . 7 𝑛(𝑚 ∈ ℕ ↦ ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠)
28 fourierdlem112.z . . . . . . . 8 𝑍 = (𝑚 ∈ ℕ ↦ (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))))
29 fourierdlem112.a . . . . . . . . . . . . 13 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π))
30 nfmpt1 5164 . . . . . . . . . . . . 13 𝑛(𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π))
3129, 30nfcxfr 2975 . . . . . . . . . . . 12 𝑛𝐴
32 nfcv 2977 . . . . . . . . . . . 12 𝑛0
3331, 32nffv 6680 . . . . . . . . . . 11 𝑛(𝐴‘0)
34 nfcv 2977 . . . . . . . . . . 11 𝑛 /
35 nfcv 2977 . . . . . . . . . . 11 𝑛2
3633, 34, 35nfov 7186 . . . . . . . . . 10 𝑛((𝐴‘0) / 2)
37 nfcv 2977 . . . . . . . . . 10 𝑛 +
38 nfcv 2977 . . . . . . . . . . 11 𝑛(1...𝑚)
3938nfsum1 15046 . . . . . . . . . 10 𝑛Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))
4036, 37, 39nfov 7186 . . . . . . . . 9 𝑛(((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))))
4117, 40nfmpt 5163 . . . . . . . 8 𝑛(𝑚 ∈ ℕ ↦ (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))))
4228, 41nfcxfr 2975 . . . . . . 7 𝑛𝑍
43 fourierdlem112.f . . . . . . . 8 (𝜑𝐹:ℝ⟶ℝ)
44 fourierdlem112.25 . . . . . . . 8 (𝜑𝑋 ∈ ℝ)
45 eqid 2821 . . . . . . . 8 (𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝𝑛) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))}) = (𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝𝑛) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
46 picn 25045 . . . . . . . . . . . . 13 π ∈ ℂ
47462timesi 11776 . . . . . . . . . . . 12 (2 · π) = (π + π)
48 fourierdlem112.t . . . . . . . . . . . 12 𝑇 = (2 · π)
4946, 46subnegi 10965 . . . . . . . . . . . 12 (π − -π) = (π + π)
5047, 48, 493eqtr4i 2854 . . . . . . . . . . 11 𝑇 = (π − -π)
51 fourierdlem112.p . . . . . . . . . . 11 𝑃 = (𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑛) = π) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
52 fourierdlem112.m . . . . . . . . . . 11 (𝜑𝑀 ∈ ℕ)
53 fourierdlem112.q . . . . . . . . . . 11 (𝜑𝑄 ∈ (𝑃𝑀))
54 pire 25044 . . . . . . . . . . . . . 14 π ∈ ℝ
5554a1i 11 . . . . . . . . . . . . 13 (𝜑 → π ∈ ℝ)
5655renegcld 11067 . . . . . . . . . . . 12 (𝜑 → -π ∈ ℝ)
5756, 44readdcld 10670 . . . . . . . . . . 11 (𝜑 → (-π + 𝑋) ∈ ℝ)
5855, 44readdcld 10670 . . . . . . . . . . 11 (𝜑 → (π + 𝑋) ∈ ℝ)
59 negpilt0 41595 . . . . . . . . . . . . . 14 -π < 0
60 pipos 25046 . . . . . . . . . . . . . 14 0 < π
6154renegcli 10947 . . . . . . . . . . . . . . 15 -π ∈ ℝ
62 0re 10643 . . . . . . . . . . . . . . 15 0 ∈ ℝ
6361, 62, 54lttri 10766 . . . . . . . . . . . . . 14 ((-π < 0 ∧ 0 < π) → -π < π)
6459, 60, 63mp2an 690 . . . . . . . . . . . . 13 -π < π
6564a1i 11 . . . . . . . . . . . 12 (𝜑 → -π < π)
6656, 55, 44, 65ltadd1dd 11251 . . . . . . . . . . 11 (𝜑 → (-π + 𝑋) < (π + 𝑋))
67 oveq1 7163 . . . . . . . . . . . . . . 15 (𝑦 = 𝑥 → (𝑦 + (𝑘 · 𝑇)) = (𝑥 + (𝑘 · 𝑇)))
6867eleq1d 2897 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → ((𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄))
6968rexbidv 3297 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → (∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄))
7069cbvrabv 3491 . . . . . . . . . . . 12 {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄} = {𝑥 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄}
7170uneq2i 4136 . . . . . . . . . . 11 ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) = ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑥 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄})
72 fourierdlem112.n . . . . . . . . . . 11 𝑁 = ((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)
73 fourierdlem112.v . . . . . . . . . . 11 𝑉 = (℩𝑓𝑓 Isom < , < ((0...𝑁), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})))
7450, 51, 52, 53, 57, 58, 66, 45, 71, 72, 73fourierdlem54 42494 . . . . . . . . . 10 (𝜑 → ((𝑁 ∈ ℕ ∧ 𝑉 ∈ ((𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝𝑛) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})‘𝑁)) ∧ 𝑉 Isom < , < ((0...𝑁), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}))))
7574simpld 497 . . . . . . . . 9 (𝜑 → (𝑁 ∈ ℕ ∧ 𝑉 ∈ ((𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝𝑛) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})‘𝑁)))
7675simpld 497 . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
7775simprd 498 . . . . . . . 8 (𝜑𝑉 ∈ ((𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝𝑛) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})‘𝑁))
78 fourierdlem112.xran . . . . . . . 8 (𝜑𝑋 ∈ ran 𝑉)
7943adantr 483 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑁)) → 𝐹:ℝ⟶ℝ)
80 fveq2 6670 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑗 → (𝑝𝑖) = (𝑝𝑗))
81 oveq1 7163 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑗 → (𝑖 + 1) = (𝑗 + 1))
8281fveq2d 6674 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑗 → (𝑝‘(𝑖 + 1)) = (𝑝‘(𝑗 + 1)))
8380, 82breq12d 5079 . . . . . . . . . . . . . . 15 (𝑖 = 𝑗 → ((𝑝𝑖) < (𝑝‘(𝑖 + 1)) ↔ (𝑝𝑗) < (𝑝‘(𝑗 + 1))))
8483cbvralvw 3449 . . . . . . . . . . . . . 14 (∀𝑖 ∈ (0..^𝑛)(𝑝𝑖) < (𝑝‘(𝑖 + 1)) ↔ ∀𝑗 ∈ (0..^𝑛)(𝑝𝑗) < (𝑝‘(𝑗 + 1)))
8584anbi2i 624 . . . . . . . . . . . . 13 ((((𝑝‘0) = -π ∧ (𝑝𝑛) = π) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝𝑖) < (𝑝‘(𝑖 + 1))) ↔ (((𝑝‘0) = -π ∧ (𝑝𝑛) = π) ∧ ∀𝑗 ∈ (0..^𝑛)(𝑝𝑗) < (𝑝‘(𝑗 + 1))))
8685a1i 11 . . . . . . . . . . . 12 (𝑝 ∈ (ℝ ↑m (0...𝑛)) → ((((𝑝‘0) = -π ∧ (𝑝𝑛) = π) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝𝑖) < (𝑝‘(𝑖 + 1))) ↔ (((𝑝‘0) = -π ∧ (𝑝𝑛) = π) ∧ ∀𝑗 ∈ (0..^𝑛)(𝑝𝑗) < (𝑝‘(𝑗 + 1)))))
8786rabbiia 3472 . . . . . . . . . . 11 {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑛) = π) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))} = {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑛) = π) ∧ ∀𝑗 ∈ (0..^𝑛)(𝑝𝑗) < (𝑝‘(𝑗 + 1)))}
8887mpteq2i 5158 . . . . . . . . . 10 (𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑛) = π) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))}) = (𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑛) = π) ∧ ∀𝑗 ∈ (0..^𝑛)(𝑝𝑗) < (𝑝‘(𝑗 + 1)))})
8951, 88eqtri 2844 . . . . . . . . 9 𝑃 = (𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑛) = π) ∧ ∀𝑗 ∈ (0..^𝑛)(𝑝𝑗) < (𝑝‘(𝑗 + 1)))})
9052adantr 483 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑁)) → 𝑀 ∈ ℕ)
9153adantr 483 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑁)) → 𝑄 ∈ (𝑃𝑀))
92 fourierdlem112.fper . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
9392adantlr 713 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
94 eleq1w 2895 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → (𝑖 ∈ (0..^𝑀) ↔ 𝑗 ∈ (0..^𝑀)))
9594anbi2d 630 . . . . . . . . . . . 12 (𝑖 = 𝑗 → ((𝜑𝑖 ∈ (0..^𝑀)) ↔ (𝜑𝑗 ∈ (0..^𝑀))))
96 fveq2 6670 . . . . . . . . . . . . . . 15 (𝑖 = 𝑗 → (𝑄𝑖) = (𝑄𝑗))
9781fveq2d 6674 . . . . . . . . . . . . . . 15 (𝑖 = 𝑗 → (𝑄‘(𝑖 + 1)) = (𝑄‘(𝑗 + 1)))
9896, 97oveq12d 7174 . . . . . . . . . . . . . 14 (𝑖 = 𝑗 → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) = ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1))))
9998reseq2d 5853 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝐹 ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))))
10098oveq1d 7171 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ) = (((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))–cn→ℂ))
10199, 100eleq12d 2907 . . . . . . . . . . . 12 (𝑖 = 𝑗 → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ) ↔ (𝐹 ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) ∈ (((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))–cn→ℂ)))
10295, 101imbi12d 347 . . . . . . . . . . 11 (𝑖 = 𝑗 → (((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) ↔ ((𝜑𝑗 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) ∈ (((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))–cn→ℂ))))
103 fourierdlem112.fcn . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
104102, 103chvarvv 2005 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) ∈ (((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))–cn→ℂ))
105104adantlr 713 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑗 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) ∈ (((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))–cn→ℂ))
10657adantr 483 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑁)) → (-π + 𝑋) ∈ ℝ)
10757rexrd 10691 . . . . . . . . . . 11 (𝜑 → (-π + 𝑋) ∈ ℝ*)
108 pnfxr 10695 . . . . . . . . . . . 12 +∞ ∈ ℝ*
109108a1i 11 . . . . . . . . . . 11 (𝜑 → +∞ ∈ ℝ*)
11058ltpnfd 12517 . . . . . . . . . . 11 (𝜑 → (π + 𝑋) < +∞)
111107, 109, 58, 66, 110eliood 41822 . . . . . . . . . 10 (𝜑 → (π + 𝑋) ∈ ((-π + 𝑋)(,)+∞))
112111adantr 483 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑁)) → (π + 𝑋) ∈ ((-π + 𝑋)(,)+∞))
113 id 22 . . . . . . . . . . 11 (𝑖 ∈ (0..^𝑁) → 𝑖 ∈ (0..^𝑁))
11472oveq2i 7167 . . . . . . . . . . 11 (0..^𝑁) = (0..^((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1))
115113, 114eleqtrdi 2923 . . . . . . . . . 10 (𝑖 ∈ (0..^𝑁) → 𝑖 ∈ (0..^((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)))
116115adantl 484 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑁)) → 𝑖 ∈ (0..^((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)))
11772oveq2i 7167 . . . . . . . . . . . 12 (0...𝑁) = (0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1))
118 isoeq4 7073 . . . . . . . . . . . 12 ((0...𝑁) = (0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)) → (𝑓 Isom < , < ((0...𝑁), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑓 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}))))
119117, 118ax-mp 5 . . . . . . . . . . 11 (𝑓 Isom < , < ((0...𝑁), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑓 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})))
120119iotabii 6340 . . . . . . . . . 10 (℩𝑓𝑓 Isom < , < ((0...𝑁), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}))) = (℩𝑓𝑓 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})))
12173, 120eqtri 2844 . . . . . . . . 9 𝑉 = (℩𝑓𝑓 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})))
12279, 89, 50, 90, 91, 93, 105, 106, 112, 116, 121fourierdlem98 42538 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑁)) → (𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
123 fourierdlem112.fbd . . . . . . . . . 10 (𝜑 → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ℝ (abs‘(𝐹𝑡)) ≤ 𝑤)
124123adantr 483 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑁)) → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ℝ (abs‘(𝐹𝑡)) ≤ 𝑤)
125 nfra1 3219 . . . . . . . . . . 11 𝑡𝑡 ∈ ℝ (abs‘(𝐹𝑡)) ≤ 𝑤
126 elioore 12769 . . . . . . . . . . . . 13 (𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))) → 𝑡 ∈ ℝ)
127 rspa 3206 . . . . . . . . . . . . 13 ((∀𝑡 ∈ ℝ (abs‘(𝐹𝑡)) ≤ 𝑤𝑡 ∈ ℝ) → (abs‘(𝐹𝑡)) ≤ 𝑤)
128126, 127sylan2 594 . . . . . . . . . . . 12 ((∀𝑡 ∈ ℝ (abs‘(𝐹𝑡)) ≤ 𝑤𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) → (abs‘(𝐹𝑡)) ≤ 𝑤)
129128ex 415 . . . . . . . . . . 11 (∀𝑡 ∈ ℝ (abs‘(𝐹𝑡)) ≤ 𝑤 → (𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))) → (abs‘(𝐹𝑡)) ≤ 𝑤))
130125, 129ralrimi 3216 . . . . . . . . . 10 (∀𝑡 ∈ ℝ (abs‘(𝐹𝑡)) ≤ 𝑤 → ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤)
131130reximi 3243 . . . . . . . . 9 (∃𝑤 ∈ ℝ ∀𝑡 ∈ ℝ (abs‘(𝐹𝑡)) ≤ 𝑤 → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤)
132124, 131syl 17 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑁)) → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤)
133 ssid 3989 . . . . . . . . . . . 12 ℝ ⊆ ℝ
134 dvfre 24548 . . . . . . . . . . . 12 ((𝐹:ℝ⟶ℝ ∧ ℝ ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
13543, 133, 134sylancl 588 . . . . . . . . . . 11 (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
136135adantr 483 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑁)) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
137 eqid 2821 . . . . . . . . . . . . 13 (ℝ D 𝐹) = (ℝ D 𝐹)
13854a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑁)) → π ∈ ℝ)
13961a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑁)) → -π ∈ ℝ)
14098reseq2d 5853 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑗 → ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((ℝ D 𝐹) ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))))
141140, 100eleq12d 2907 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑗 → (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ) ↔ ((ℝ D 𝐹) ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) ∈ (((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))–cn→ℂ)))
14295, 141imbi12d 347 . . . . . . . . . . . . . . 15 (𝑖 = 𝑗 → (((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) ↔ ((𝜑𝑗 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) ∈ (((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))–cn→ℂ))))
143 fourierdlem112.fdvcn . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
144142, 143chvarvv 2005 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) ∈ (((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))–cn→ℂ))
145144adantlr 713 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑗 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) ∈ (((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))–cn→ℂ))
146 fourierdlem112.x . . . . . . . . . . . . . . 15 (𝜑𝑋 ∈ ℝ)
14756, 146readdcld 10670 . . . . . . . . . . . . . 14 (𝜑 → (-π + 𝑋) ∈ ℝ)
148147adantr 483 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑁)) → (-π + 𝑋) ∈ ℝ)
149147rexrd 10691 . . . . . . . . . . . . . . 15 (𝜑 → (-π + 𝑋) ∈ ℝ*)
15055, 146readdcld 10670 . . . . . . . . . . . . . . 15 (𝜑 → (π + 𝑋) ∈ ℝ)
15156, 55, 146, 65ltadd1dd 11251 . . . . . . . . . . . . . . 15 (𝜑 → (-π + 𝑋) < (π + 𝑋))
152150ltpnfd 12517 . . . . . . . . . . . . . . 15 (𝜑 → (π + 𝑋) < +∞)
153149, 109, 150, 151, 152eliood 41822 . . . . . . . . . . . . . 14 (𝜑 → (π + 𝑋) ∈ ((-π + 𝑋)(,)+∞))
154153adantr 483 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑁)) → (π + 𝑋) ∈ ((-π + 𝑋)(,)+∞))
155 oveq1 7163 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = → (𝑘 · 𝑇) = ( · 𝑇))
156155oveq2d 7172 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = → (𝑦 + (𝑘 · 𝑇)) = (𝑦 + ( · 𝑇)))
157156eleq1d 2897 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = → ((𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ (𝑦 + ( · 𝑇)) ∈ ran 𝑄))
158157cbvrexvw 3450 . . . . . . . . . . . . . . . . . . 19 (∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄)
159158rgenw 3150 . . . . . . . . . . . . . . . . . 18 𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋))(∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄)
160 rabbi 3383 . . . . . . . . . . . . . . . . . 18 (∀𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋))(∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄) ↔ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄} = {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄})
161159, 160mpbi 232 . . . . . . . . . . . . . . . . 17 {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄} = {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄}
162161uneq2i 4136 . . . . . . . . . . . . . . . 16 ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) = ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄})
163 isoeq5 7074 . . . . . . . . . . . . . . . 16 (({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) = ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄}) → (𝑓 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑓 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄}))))
164162, 163ax-mp 5 . . . . . . . . . . . . . . 15 (𝑓 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑓 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄})))
165164iotabii 6340 . . . . . . . . . . . . . 14 (℩𝑓𝑓 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}))) = (℩𝑓𝑓 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄})))
166121, 165eqtri 2844 . . . . . . . . . . . . 13 𝑉 = (℩𝑓𝑓 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄})))
167 eleq1w 2895 . . . . . . . . . . . . . . 15 (𝑣 = 𝑢 → (𝑣 ∈ dom (ℝ D 𝐹) ↔ 𝑢 ∈ dom (ℝ D 𝐹)))
168 fveq2 6670 . . . . . . . . . . . . . . 15 (𝑣 = 𝑢 → ((ℝ D 𝐹)‘𝑣) = ((ℝ D 𝐹)‘𝑢))
169167, 168ifbieq1d 4490 . . . . . . . . . . . . . 14 (𝑣 = 𝑢 → if(𝑣 ∈ dom (ℝ D 𝐹), ((ℝ D 𝐹)‘𝑣), 0) = if(𝑢 ∈ dom (ℝ D 𝐹), ((ℝ D 𝐹)‘𝑢), 0))
170169cbvmptv 5169 . . . . . . . . . . . . 13 (𝑣 ∈ ℝ ↦ if(𝑣 ∈ dom (ℝ D 𝐹), ((ℝ D 𝐹)‘𝑣), 0)) = (𝑢 ∈ ℝ ↦ if(𝑢 ∈ dom (ℝ D 𝐹), ((ℝ D 𝐹)‘𝑢), 0))
17179, 137, 89, 138, 139, 50, 90, 91, 93, 145, 148, 154, 116, 166, 170fourierdlem97 42537 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑁)) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
172 cncff 23501 . . . . . . . . . . . 12 (((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℂ)
173 fdm 6522 . . . . . . . . . . . 12 (((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℂ → dom ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) = ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))
174171, 172, 1733syl 18 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑁)) → dom ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) = ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))
175 ssdmres 5876 . . . . . . . . . . 11 (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))) ⊆ dom (ℝ D 𝐹) ↔ dom ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) = ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))
176174, 175sylibr 236 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑁)) → ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))) ⊆ dom (ℝ D 𝐹))
177136, 176fssresd 6545 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑁)) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ)
178 ax-resscn 10594 . . . . . . . . . . 11 ℝ ⊆ ℂ
179178a1i 11 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑁)) → ℝ ⊆ ℂ)
180 cncffvrn 23506 . . . . . . . . . 10 ((ℝ ⊆ ℂ ∧ ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ)) → (((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℝ) ↔ ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ))
181179, 171, 180syl2anc 586 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑁)) → (((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℝ) ↔ ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ))
182177, 181mpbird 259 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑁)) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℝ))
183 fourierdlem112.fdvbd . . . . . . . . . . 11 (𝜑 → ∃𝑧 ∈ ℝ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
184183adantr 483 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑁)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
185 nfv 1915 . . . . . . . . . . . . . 14 𝑡(𝜑𝑖 ∈ (0..^𝑁))
186 nfra1 3219 . . . . . . . . . . . . . 14 𝑡𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧
187185, 186nfan 1900 . . . . . . . . . . . . 13 𝑡((𝜑𝑖 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
188 fvres 6689 . . . . . . . . . . . . . . . . . 18 (𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))) → (((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘𝑡) = ((ℝ D 𝐹)‘𝑡))
189188adantl 484 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) → (((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘𝑡) = ((ℝ D 𝐹)‘𝑡))
190189fveq2d 6674 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) → (abs‘(((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘𝑡)) = (abs‘((ℝ D 𝐹)‘𝑡)))
191190adantlr 713 . . . . . . . . . . . . . . 15 ((((𝜑𝑖 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) → (abs‘(((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘𝑡)) = (abs‘((ℝ D 𝐹)‘𝑡)))
192 simplr 767 . . . . . . . . . . . . . . . 16 ((((𝜑𝑖 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) → ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
193176sselda 3967 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) → 𝑡 ∈ dom (ℝ D 𝐹))
194193adantlr 713 . . . . . . . . . . . . . . . 16 ((((𝜑𝑖 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) → 𝑡 ∈ dom (ℝ D 𝐹))
195 rspa 3206 . . . . . . . . . . . . . . . 16 ((∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧𝑡 ∈ dom (ℝ D 𝐹)) → (abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
196192, 194, 195syl2anc 586 . . . . . . . . . . . . . . 15 ((((𝜑𝑖 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) → (abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
197191, 196eqbrtrd 5088 . . . . . . . . . . . . . 14 ((((𝜑𝑖 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) → (abs‘(((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘𝑡)) ≤ 𝑧)
198197ex 415 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) → (𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))) → (abs‘(((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘𝑡)) ≤ 𝑧))
199187, 198ralrimi 3216 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) → ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘𝑡)) ≤ 𝑧)
200199ex 415 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑁)) → (∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧 → ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘𝑡)) ≤ 𝑧))
201200reximdv 3273 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑁)) → (∃𝑧 ∈ ℝ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧 → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘𝑡)) ≤ 𝑧))
202184, 201mpd 15 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑁)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘𝑡)) ≤ 𝑧)
203 nfra1 3219 . . . . . . . . . . . 12 𝑡𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘𝑡)) ≤ 𝑧
204188eqcomd 2827 . . . . . . . . . . . . . . . 16 (𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))) → ((ℝ D 𝐹)‘𝑡) = (((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘𝑡))
205204fveq2d 6674 . . . . . . . . . . . . . . 15 (𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))) → (abs‘((ℝ D 𝐹)‘𝑡)) = (abs‘(((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘𝑡)))
206205adantl 484 . . . . . . . . . . . . . 14 ((∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘𝑡)) ≤ 𝑧𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) → (abs‘((ℝ D 𝐹)‘𝑡)) = (abs‘(((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘𝑡)))
207 rspa 3206 . . . . . . . . . . . . . 14 ((∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘𝑡)) ≤ 𝑧𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) → (abs‘(((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘𝑡)) ≤ 𝑧)
208206, 207eqbrtrd 5088 . . . . . . . . . . . . 13 ((∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘𝑡)) ≤ 𝑧𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) → (abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
209208ex 415 . . . . . . . . . . . 12 (∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘𝑡)) ≤ 𝑧 → (𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))) → (abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧))
210203, 209ralrimi 3216 . . . . . . . . . . 11 (∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘𝑡)) ≤ 𝑧 → ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
211210a1i 11 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑁)) → (∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘𝑡)) ≤ 𝑧 → ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧))
212211reximdv 3273 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑁)) → (∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘𝑡)) ≤ 𝑧 → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧))
213202, 212mpd 15 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑁)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
214 nfv 1915 . . . . . . . . . . . 12 𝑖(𝜑𝑗 ∈ (0..^𝑀))
215 nfcsb1v 3907 . . . . . . . . . . . . 13 𝑖𝑗 / 𝑖𝐶
216215nfel1 2994 . . . . . . . . . . . 12 𝑖𝑗 / 𝑖𝐶 ∈ ((𝐹 ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) lim (𝑄𝑗))
217214, 216nfim 1897 . . . . . . . . . . 11 𝑖((𝜑𝑗 ∈ (0..^𝑀)) → 𝑗 / 𝑖𝐶 ∈ ((𝐹 ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) lim (𝑄𝑗)))
218 csbeq1a 3897 . . . . . . . . . . . . 13 (𝑖 = 𝑗𝐶 = 𝑗 / 𝑖𝐶)
21999, 96oveq12d 7174 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)) = ((𝐹 ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) lim (𝑄𝑗)))
220218, 219eleq12d 2907 . . . . . . . . . . . 12 (𝑖 = 𝑗 → (𝐶 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)) ↔ 𝑗 / 𝑖𝐶 ∈ ((𝐹 ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) lim (𝑄𝑗))))
22195, 220imbi12d 347 . . . . . . . . . . 11 (𝑖 = 𝑗 → (((𝜑𝑖 ∈ (0..^𝑀)) → 𝐶 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖))) ↔ ((𝜑𝑗 ∈ (0..^𝑀)) → 𝑗 / 𝑖𝐶 ∈ ((𝐹 ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) lim (𝑄𝑗)))))
222 fourierdlem112.c . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐶 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
223217, 221, 222chvarfv 2242 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0..^𝑀)) → 𝑗 / 𝑖𝐶 ∈ ((𝐹 ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) lim (𝑄𝑗)))
224223adantlr 713 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑗 ∈ (0..^𝑀)) → 𝑗 / 𝑖𝐶 ∈ ((𝐹 ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) lim (𝑄𝑗)))
22579, 89, 50, 90, 91, 93, 105, 224, 106, 112, 116, 121fourierdlem96 42536 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑁)) → if(((𝑑 ∈ (-π(,]π) ↦ if(𝑑 = π, -π, 𝑑))‘((𝑐 ∈ ℝ ↦ (𝑐 + ((⌊‘((π − 𝑐) / 𝑇)) · 𝑇)))‘(𝑉𝑖))) = (𝑄‘((𝑦 ∈ ℝ ↦ sup({𝑓 ∈ (0..^𝑀) ∣ (𝑄𝑓) ≤ ((𝑑 ∈ (-π(,]π) ↦ if(𝑑 = π, -π, 𝑑))‘((𝑐 ∈ ℝ ↦ (𝑐 + ((⌊‘((π − 𝑐) / 𝑇)) · 𝑇)))‘𝑦))}, ℝ, < ))‘(𝑉𝑖))), ((𝑗 ∈ (0..^𝑀) ↦ 𝑗 / 𝑖𝐶)‘((𝑦 ∈ ℝ ↦ sup({𝑓 ∈ (0..^𝑀) ∣ (𝑄𝑓) ≤ ((𝑑 ∈ (-π(,]π) ↦ if(𝑑 = π, -π, 𝑑))‘((𝑐 ∈ ℝ ↦ (𝑐 + ((⌊‘((π − 𝑐) / 𝑇)) · 𝑇)))‘𝑦))}, ℝ, < ))‘(𝑉𝑖))), (𝐹‘((𝑑 ∈ (-π(,]π) ↦ if(𝑑 = π, -π, 𝑑))‘((𝑐 ∈ ℝ ↦ (𝑐 + ((⌊‘((π − 𝑐) / 𝑇)) · 𝑇)))‘(𝑉𝑖))))) ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉𝑖)))
226 nfcsb1v 3907 . . . . . . . . . . . . 13 𝑖𝑗 / 𝑖𝑈
227226nfel1 2994 . . . . . . . . . . . 12 𝑖𝑗 / 𝑖𝑈 ∈ ((𝐹 ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) lim (𝑄‘(𝑗 + 1)))
228214, 227nfim 1897 . . . . . . . . . . 11 𝑖((𝜑𝑗 ∈ (0..^𝑀)) → 𝑗 / 𝑖𝑈 ∈ ((𝐹 ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) lim (𝑄‘(𝑗 + 1))))
229 csbeq1a 3897 . . . . . . . . . . . . 13 (𝑖 = 𝑗𝑈 = 𝑗 / 𝑖𝑈)
23099, 97oveq12d 7174 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))) = ((𝐹 ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) lim (𝑄‘(𝑗 + 1))))
231229, 230eleq12d 2907 . . . . . . . . . . . 12 (𝑖 = 𝑗 → (𝑈 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))) ↔ 𝑗 / 𝑖𝑈 ∈ ((𝐹 ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) lim (𝑄‘(𝑗 + 1)))))
23295, 231imbi12d 347 . . . . . . . . . . 11 (𝑖 = 𝑗 → (((𝜑𝑖 ∈ (0..^𝑀)) → 𝑈 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1)))) ↔ ((𝜑𝑗 ∈ (0..^𝑀)) → 𝑗 / 𝑖𝑈 ∈ ((𝐹 ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) lim (𝑄‘(𝑗 + 1))))))
233 fourierdlem112.u . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑈 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
234228, 232, 233chvarfv 2242 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0..^𝑀)) → 𝑗 / 𝑖𝑈 ∈ ((𝐹 ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) lim (𝑄‘(𝑗 + 1))))
235234adantlr 713 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑗 ∈ (0..^𝑀)) → 𝑗 / 𝑖𝑈 ∈ ((𝐹 ↾ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) lim (𝑄‘(𝑗 + 1))))
23679, 89, 50, 90, 91, 93, 105, 235, 148, 154, 116, 121fourierdlem99 42539 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑁)) → if(((𝑒 ∈ ℝ ↦ (𝑒 + ((⌊‘((π − 𝑒) / 𝑇)) · 𝑇)))‘(𝑉‘(𝑖 + 1))) = (𝑄‘(((𝑦 ∈ ℝ ↦ sup({ ∈ (0..^𝑀) ∣ (𝑄) ≤ ((𝑔 ∈ (-π(,]π) ↦ if(𝑔 = π, -π, 𝑔))‘((𝑒 ∈ ℝ ↦ (𝑒 + ((⌊‘((π − 𝑒) / 𝑇)) · 𝑇)))‘𝑦))}, ℝ, < ))‘(𝑉𝑖)) + 1)), ((𝑗 ∈ (0..^𝑀) ↦ 𝑗 / 𝑖𝑈)‘((𝑦 ∈ ℝ ↦ sup({ ∈ (0..^𝑀) ∣ (𝑄) ≤ ((𝑔 ∈ (-π(,]π) ↦ if(𝑔 = π, -π, 𝑔))‘((𝑒 ∈ ℝ ↦ (𝑒 + ((⌊‘((π − 𝑒) / 𝑇)) · 𝑇)))‘𝑦))}, ℝ, < ))‘(𝑉𝑖))), (𝐹‘((𝑒 ∈ ℝ ↦ (𝑒 + ((⌊‘((π − 𝑒) / 𝑇)) · 𝑇)))‘(𝑉‘(𝑖 + 1))))) ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉‘(𝑖 + 1))))
237 eqeq1 2825 . . . . . . . . . 10 (𝑔 = 𝑠 → (𝑔 = 0 ↔ 𝑠 = 0))
238 oveq2 7164 . . . . . . . . . . . . 13 (𝑔 = 𝑠 → (𝑋 + 𝑔) = (𝑋 + 𝑠))
239238fveq2d 6674 . . . . . . . . . . . 12 (𝑔 = 𝑠 → (𝐹‘(𝑋 + 𝑔)) = (𝐹‘(𝑋 + 𝑠)))
240 breq2 5070 . . . . . . . . . . . . 13 (𝑔 = 𝑠 → (0 < 𝑔 ↔ 0 < 𝑠))
241240ifbid 4489 . . . . . . . . . . . 12 (𝑔 = 𝑠 → if(0 < 𝑔, 𝑅, 𝐿) = if(0 < 𝑠, 𝑅, 𝐿))
242239, 241oveq12d 7174 . . . . . . . . . . 11 (𝑔 = 𝑠 → ((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) = ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑅, 𝐿)))
243 id 22 . . . . . . . . . . 11 (𝑔 = 𝑠𝑔 = 𝑠)
244242, 243oveq12d 7174 . . . . . . . . . 10 (𝑔 = 𝑠 → (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔) = (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑅, 𝐿)) / 𝑠))
245237, 244ifbieq2d 4492 . . . . . . . . 9 (𝑔 = 𝑠 → if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)) = if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑅, 𝐿)) / 𝑠)))
246245cbvmptv 5169 . . . . . . . 8 (𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔))) = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑅, 𝐿)) / 𝑠)))
247 eqeq1 2825 . . . . . . . . . 10 (𝑜 = 𝑠 → (𝑜 = 0 ↔ 𝑠 = 0))
248 id 22 . . . . . . . . . . 11 (𝑜 = 𝑠𝑜 = 𝑠)
249 oveq1 7163 . . . . . . . . . . . . 13 (𝑜 = 𝑠 → (𝑜 / 2) = (𝑠 / 2))
250249fveq2d 6674 . . . . . . . . . . . 12 (𝑜 = 𝑠 → (sin‘(𝑜 / 2)) = (sin‘(𝑠 / 2)))
251250oveq2d 7172 . . . . . . . . . . 11 (𝑜 = 𝑠 → (2 · (sin‘(𝑜 / 2))) = (2 · (sin‘(𝑠 / 2))))
252248, 251oveq12d 7174 . . . . . . . . . 10 (𝑜 = 𝑠 → (𝑜 / (2 · (sin‘(𝑜 / 2)))) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
253247, 252ifbieq2d 4492 . . . . . . . . 9 (𝑜 = 𝑠 → if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))) = if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
254253cbvmptv 5169 . . . . . . . 8 (𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2)))))) = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
255 fveq2 6670 . . . . . . . . . 10 (𝑟 = 𝑠 → ((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) = ((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑠))
256 fveq2 6670 . . . . . . . . . 10 (𝑟 = 𝑠 → ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟) = ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑠))
257255, 256oveq12d 7174 . . . . . . . . 9 (𝑟 = 𝑠 → (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)) = (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑠) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑠)))
258257cbvmptv 5169 . . . . . . . 8 (𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟))) = (𝑠 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑠) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑠)))
259 oveq2 7164 . . . . . . . . . 10 (𝑑 = 𝑠 → ((𝑘 + (1 / 2)) · 𝑑) = ((𝑘 + (1 / 2)) · 𝑠))
260259fveq2d 6674 . . . . . . . . 9 (𝑑 = 𝑠 → (sin‘((𝑘 + (1 / 2)) · 𝑑)) = (sin‘((𝑘 + (1 / 2)) · 𝑠)))
261260cbvmptv 5169 . . . . . . . 8 (𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑘 + (1 / 2)) · 𝑑))) = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑘 + (1 / 2)) · 𝑠)))
262 fveq2 6670 . . . . . . . . . 10 (𝑧 = 𝑠 → ((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) = ((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑠))
263 fveq2 6670 . . . . . . . . . 10 (𝑧 = 𝑠 → ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑘 + (1 / 2)) · 𝑑)))‘𝑧) = ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑘 + (1 / 2)) · 𝑑)))‘𝑠))
264262, 263oveq12d 7174 . . . . . . . . 9 (𝑧 = 𝑠 → (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑘 + (1 / 2)) · 𝑑)))‘𝑧)) = (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑠) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑘 + (1 / 2)) · 𝑑)))‘𝑠)))
265264cbvmptv 5169 . . . . . . . 8 (𝑧 ∈ (-π[,]π) ↦ (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑘 + (1 / 2)) · 𝑑)))‘𝑧))) = (𝑠 ∈ (-π[,]π) ↦ (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑠) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑘 + (1 / 2)) · 𝑑)))‘𝑠)))
266 fveq2 6670 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → (𝐷𝑚) = (𝐷𝑛))
267266fveq1d 6672 . . . . . . . . . . . 12 (𝑚 = 𝑛 → ((𝐷𝑚)‘𝑠) = ((𝐷𝑛)‘𝑠))
268267oveq2d 7172 . . . . . . . . . . 11 (𝑚 = 𝑛 → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) = ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)))
269268adantr 483 . . . . . . . . . 10 ((𝑚 = 𝑛𝑠 ∈ (-π(,)0)) → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) = ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)))
270269itgeq2dv 24382 . . . . . . . . 9 (𝑚 = 𝑛 → ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠 = ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
271270cbvmptv 5169 . . . . . . . 8 (𝑚 ∈ ℕ ↦ ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠) = (𝑛 ∈ ℕ ↦ ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
272 oveq1 7163 . . . . . . . . . . . . . . . . . . 19 (𝑐 = 𝑘 → (𝑐 + (1 / 2)) = (𝑘 + (1 / 2)))
273272oveq1d 7171 . . . . . . . . . . . . . . . . . 18 (𝑐 = 𝑘 → ((𝑐 + (1 / 2)) · 𝑑) = ((𝑘 + (1 / 2)) · 𝑑))
274273fveq2d 6674 . . . . . . . . . . . . . . . . 17 (𝑐 = 𝑘 → (sin‘((𝑐 + (1 / 2)) · 𝑑)) = (sin‘((𝑘 + (1 / 2)) · 𝑑)))
275274mpteq2dv 5162 . . . . . . . . . . . . . . . 16 (𝑐 = 𝑘 → (𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑐 + (1 / 2)) · 𝑑))) = (𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑘 + (1 / 2)) · 𝑑))))
276275fveq1d 6672 . . . . . . . . . . . . . . 15 (𝑐 = 𝑘 → ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑐 + (1 / 2)) · 𝑑)))‘𝑧) = ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑘 + (1 / 2)) · 𝑑)))‘𝑧))
277276oveq2d 7172 . . . . . . . . . . . . . 14 (𝑐 = 𝑘 → (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑐 + (1 / 2)) · 𝑑)))‘𝑧)) = (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑘 + (1 / 2)) · 𝑑)))‘𝑧)))
278277mpteq2dv 5162 . . . . . . . . . . . . 13 (𝑐 = 𝑘 → (𝑧 ∈ (-π[,]π) ↦ (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑐 + (1 / 2)) · 𝑑)))‘𝑧))) = (𝑧 ∈ (-π[,]π) ↦ (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑘 + (1 / 2)) · 𝑑)))‘𝑧))))
279278fveq1d 6672 . . . . . . . . . . . 12 (𝑐 = 𝑘 → ((𝑧 ∈ (-π[,]π) ↦ (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑐 + (1 / 2)) · 𝑑)))‘𝑧)))‘𝑠) = ((𝑧 ∈ (-π[,]π) ↦ (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑘 + (1 / 2)) · 𝑑)))‘𝑧)))‘𝑠))
280279adantr 483 . . . . . . . . . . 11 ((𝑐 = 𝑘𝑠 ∈ (-π(,)0)) → ((𝑧 ∈ (-π[,]π) ↦ (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑐 + (1 / 2)) · 𝑑)))‘𝑧)))‘𝑠) = ((𝑧 ∈ (-π[,]π) ↦ (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑘 + (1 / 2)) · 𝑑)))‘𝑧)))‘𝑠))
281280itgeq2dv 24382 . . . . . . . . . 10 (𝑐 = 𝑘 → ∫(-π(,)0)((𝑧 ∈ (-π[,]π) ↦ (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑐 + (1 / 2)) · 𝑑)))‘𝑧)))‘𝑠) d𝑠 = ∫(-π(,)0)((𝑧 ∈ (-π[,]π) ↦ (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑘 + (1 / 2)) · 𝑑)))‘𝑧)))‘𝑠) d𝑠)
282281oveq1d 7171 . . . . . . . . 9 (𝑐 = 𝑘 → (∫(-π(,)0)((𝑧 ∈ (-π[,]π) ↦ (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑐 + (1 / 2)) · 𝑑)))‘𝑧)))‘𝑠) d𝑠 / π) = (∫(-π(,)0)((𝑧 ∈ (-π[,]π) ↦ (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑘 + (1 / 2)) · 𝑑)))‘𝑧)))‘𝑠) d𝑠 / π))
283282cbvmptv 5169 . . . . . . . 8 (𝑐 ∈ ℕ ↦ (∫(-π(,)0)((𝑧 ∈ (-π[,]π) ↦ (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑐 + (1 / 2)) · 𝑑)))‘𝑧)))‘𝑠) d𝑠 / π)) = (𝑘 ∈ ℕ ↦ (∫(-π(,)0)((𝑧 ∈ (-π[,]π) ↦ (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑘 + (1 / 2)) · 𝑑)))‘𝑧)))‘𝑠) d𝑠 / π))
284 fourierdlem112.r . . . . . . . 8 (𝜑𝑅 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
285 fourierdlem112.l . . . . . . . 8 (𝜑𝐿 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
286 fourierdlem112.e . . . . . . . 8 (𝜑𝐸 ∈ (((ℝ D 𝐹) ↾ (-∞(,)𝑋)) lim 𝑋))
287 fourierdlem112.i . . . . . . . 8 (𝜑𝐼 ∈ (((ℝ D 𝐹) ↾ (𝑋(,)+∞)) lim 𝑋))
288 fourierdlem112.d . . . . . . . . 9 𝐷 = (𝑚 ∈ ℕ ↦ (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑚) + 1) / (2 · π)), ((sin‘((𝑚 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))))
289 oveq1 7163 . . . . . . . . . . . . . 14 (𝑦 = 𝑠 → (𝑦 mod (2 · π)) = (𝑠 mod (2 · π)))
290289eqeq1d 2823 . . . . . . . . . . . . 13 (𝑦 = 𝑠 → ((𝑦 mod (2 · π)) = 0 ↔ (𝑠 mod (2 · π)) = 0))
291 oveq2 7164 . . . . . . . . . . . . . . 15 (𝑦 = 𝑠 → ((𝑚 + (1 / 2)) · 𝑦) = ((𝑚 + (1 / 2)) · 𝑠))
292291fveq2d 6674 . . . . . . . . . . . . . 14 (𝑦 = 𝑠 → (sin‘((𝑚 + (1 / 2)) · 𝑦)) = (sin‘((𝑚 + (1 / 2)) · 𝑠)))
293 oveq1 7163 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑠 → (𝑦 / 2) = (𝑠 / 2))
294293fveq2d 6674 . . . . . . . . . . . . . . 15 (𝑦 = 𝑠 → (sin‘(𝑦 / 2)) = (sin‘(𝑠 / 2)))
295294oveq2d 7172 . . . . . . . . . . . . . 14 (𝑦 = 𝑠 → ((2 · π) · (sin‘(𝑦 / 2))) = ((2 · π) · (sin‘(𝑠 / 2))))
296292, 295oveq12d 7174 . . . . . . . . . . . . 13 (𝑦 = 𝑠 → ((sin‘((𝑚 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))) = ((sin‘((𝑚 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))
297290, 296ifbieq2d 4492 . . . . . . . . . . . 12 (𝑦 = 𝑠 → if((𝑦 mod (2 · π)) = 0, (((2 · 𝑚) + 1) / (2 · π)), ((sin‘((𝑚 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2))))) = if((𝑠 mod (2 · π)) = 0, (((2 · 𝑚) + 1) / (2 · π)), ((sin‘((𝑚 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))))
298297cbvmptv 5169 . . . . . . . . . . 11 (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑚) + 1) / (2 · π)), ((sin‘((𝑚 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))) = (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑚) + 1) / (2 · π)), ((sin‘((𝑚 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))))
299 simpl 485 . . . . . . . . . . . . . . . 16 ((𝑚 = 𝑘𝑠 ∈ ℝ) → 𝑚 = 𝑘)
300299oveq2d 7172 . . . . . . . . . . . . . . 15 ((𝑚 = 𝑘𝑠 ∈ ℝ) → (2 · 𝑚) = (2 · 𝑘))
301300oveq1d 7171 . . . . . . . . . . . . . 14 ((𝑚 = 𝑘𝑠 ∈ ℝ) → ((2 · 𝑚) + 1) = ((2 · 𝑘) + 1))
302301oveq1d 7171 . . . . . . . . . . . . 13 ((𝑚 = 𝑘𝑠 ∈ ℝ) → (((2 · 𝑚) + 1) / (2 · π)) = (((2 · 𝑘) + 1) / (2 · π)))
303299oveq1d 7171 . . . . . . . . . . . . . . . 16 ((𝑚 = 𝑘𝑠 ∈ ℝ) → (𝑚 + (1 / 2)) = (𝑘 + (1 / 2)))
304303oveq1d 7171 . . . . . . . . . . . . . . 15 ((𝑚 = 𝑘𝑠 ∈ ℝ) → ((𝑚 + (1 / 2)) · 𝑠) = ((𝑘 + (1 / 2)) · 𝑠))
305304fveq2d 6674 . . . . . . . . . . . . . 14 ((𝑚 = 𝑘𝑠 ∈ ℝ) → (sin‘((𝑚 + (1 / 2)) · 𝑠)) = (sin‘((𝑘 + (1 / 2)) · 𝑠)))
306305oveq1d 7171 . . . . . . . . . . . . 13 ((𝑚 = 𝑘𝑠 ∈ ℝ) → ((sin‘((𝑚 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))) = ((sin‘((𝑘 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))
307302, 306ifeq12d 4487 . . . . . . . . . . . 12 ((𝑚 = 𝑘𝑠 ∈ ℝ) → if((𝑠 mod (2 · π)) = 0, (((2 · 𝑚) + 1) / (2 · π)), ((sin‘((𝑚 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))) = if((𝑠 mod (2 · π)) = 0, (((2 · 𝑘) + 1) / (2 · π)), ((sin‘((𝑘 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))))
308307mpteq2dva 5161 . . . . . . . . . . 11 (𝑚 = 𝑘 → (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑚) + 1) / (2 · π)), ((sin‘((𝑚 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))) = (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑘) + 1) / (2 · π)), ((sin‘((𝑘 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
309298, 308syl5eq 2868 . . . . . . . . . 10 (𝑚 = 𝑘 → (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑚) + 1) / (2 · π)), ((sin‘((𝑚 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))) = (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑘) + 1) / (2 · π)), ((sin‘((𝑘 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
310309cbvmptv 5169 . . . . . . . . 9 (𝑚 ∈ ℕ ↦ (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑚) + 1) / (2 · π)), ((sin‘((𝑚 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2))))))) = (𝑘 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑘) + 1) / (2 · π)), ((sin‘((𝑘 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
311288, 310eqtri 2844 . . . . . . . 8 𝐷 = (𝑘 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑘) + 1) / (2 · π)), ((sin‘((𝑘 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
312 eqid 2821 . . . . . . . 8 ((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟))) ↾ (-π[,]𝑙)) = ((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟))) ↾ (-π[,]𝑙))
313 eqid 2821 . . . . . . . 8 ({-π, 𝑙} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (-π(,)𝑙))) = ({-π, 𝑙} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (-π(,)𝑙)))
314 eqid 2821 . . . . . . . 8 ((♯‘({-π, 𝑙} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (-π(,)𝑙)))) − 1) = ((♯‘({-π, 𝑙} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (-π(,)𝑙)))) − 1)
315 isoeq1 7070 . . . . . . . . 9 (𝑢 = 𝑤 → (𝑢 Isom < , < ((0...((♯‘({-π, 𝑙} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (-π(,)𝑙)))) − 1)), ({-π, 𝑙} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (-π(,)𝑙)))) ↔ 𝑤 Isom < , < ((0...((♯‘({-π, 𝑙} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (-π(,)𝑙)))) − 1)), ({-π, 𝑙} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (-π(,)𝑙))))))
316315cbviotavw 6322 . . . . . . . 8 (℩𝑢𝑢 Isom < , < ((0...((♯‘({-π, 𝑙} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (-π(,)𝑙)))) − 1)), ({-π, 𝑙} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (-π(,)𝑙))))) = (℩𝑤𝑤 Isom < , < ((0...((♯‘({-π, 𝑙} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (-π(,)𝑙)))) − 1)), ({-π, 𝑙} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (-π(,)𝑙)))))
317 fveq2 6670 . . . . . . . . . 10 (𝑗 = 𝑖 → (𝑉𝑗) = (𝑉𝑖))
318317oveq1d 7171 . . . . . . . . 9 (𝑗 = 𝑖 → ((𝑉𝑗) − 𝑋) = ((𝑉𝑖) − 𝑋))
319318cbvmptv 5169 . . . . . . . 8 (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) = (𝑖 ∈ (0...𝑁) ↦ ((𝑉𝑖) − 𝑋))
320 eqid 2821 . . . . . . . 8 (𝑚 ∈ (0..^𝑁)(((℩𝑢𝑢 Isom < , < ((0...((♯‘({-π, 𝑙} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (-π(,)𝑙)))) − 1)), ({-π, 𝑙} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (-π(,)𝑙)))))‘𝑏)(,)((℩𝑢𝑢 Isom < , < ((0...((♯‘({-π, 𝑙} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (-π(,)𝑙)))) − 1)), ({-π, 𝑙} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (-π(,)𝑙)))))‘(𝑏 + 1))) ⊆ (((𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋))‘𝑚)(,)((𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋))‘(𝑚 + 1)))) = (𝑚 ∈ (0..^𝑁)(((℩𝑢𝑢 Isom < , < ((0...((♯‘({-π, 𝑙} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (-π(,)𝑙)))) − 1)), ({-π, 𝑙} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (-π(,)𝑙)))))‘𝑏)(,)((℩𝑢𝑢 Isom < , < ((0...((♯‘({-π, 𝑙} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (-π(,)𝑙)))) − 1)), ({-π, 𝑙} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (-π(,)𝑙)))))‘(𝑏 + 1))) ⊆ (((𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋))‘𝑚)(,)((𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋))‘(𝑚 + 1))))
321 fveq2 6670 . . . . . . . . . . . . . 14 (𝑎 = 𝑠 → ((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑎) = ((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑠))
322 oveq2 7164 . . . . . . . . . . . . . . 15 (𝑎 = 𝑠 → ((𝑏 + (1 / 2)) · 𝑎) = ((𝑏 + (1 / 2)) · 𝑠))
323322fveq2d 6674 . . . . . . . . . . . . . 14 (𝑎 = 𝑠 → (sin‘((𝑏 + (1 / 2)) · 𝑎)) = (sin‘((𝑏 + (1 / 2)) · 𝑠)))
324321, 323oveq12d 7174 . . . . . . . . . . . . 13 (𝑎 = 𝑠 → (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑎) · (sin‘((𝑏 + (1 / 2)) · 𝑎))) = (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑠) · (sin‘((𝑏 + (1 / 2)) · 𝑠))))
325324cbvitgv 24377 . . . . . . . . . . . 12 ∫(𝑙(,)0)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑎) · (sin‘((𝑏 + (1 / 2)) · 𝑎))) d𝑎 = ∫(𝑙(,)0)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑠) · (sin‘((𝑏 + (1 / 2)) · 𝑠))) d𝑠
326325fveq2i 6673 . . . . . . . . . . 11 (abs‘∫(𝑙(,)0)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑎) · (sin‘((𝑏 + (1 / 2)) · 𝑎))) d𝑎) = (abs‘∫(𝑙(,)0)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑠) · (sin‘((𝑏 + (1 / 2)) · 𝑠))) d𝑠)
327326breq1i 5073 . . . . . . . . . 10 ((abs‘∫(𝑙(,)0)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑎) · (sin‘((𝑏 + (1 / 2)) · 𝑎))) d𝑎) < (𝑖 / 2) ↔ (abs‘∫(𝑙(,)0)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑠) · (sin‘((𝑏 + (1 / 2)) · 𝑠))) d𝑠) < (𝑖 / 2))
328327anbi2i 624 . . . . . . . . 9 (((((𝜑𝑖 ∈ ℝ+) ∧ 𝑙 ∈ (-π(,)0)) ∧ 𝑏 ∈ ℕ) ∧ (abs‘∫(𝑙(,)0)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑎) · (sin‘((𝑏 + (1 / 2)) · 𝑎))) d𝑎) < (𝑖 / 2)) ↔ ((((𝜑𝑖 ∈ ℝ+) ∧ 𝑙 ∈ (-π(,)0)) ∧ 𝑏 ∈ ℕ) ∧ (abs‘∫(𝑙(,)0)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑠) · (sin‘((𝑏 + (1 / 2)) · 𝑠))) d𝑠) < (𝑖 / 2)))
329324cbvitgv 24377 . . . . . . . . . . 11 ∫(-π(,)𝑙)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑎) · (sin‘((𝑏 + (1 / 2)) · 𝑎))) d𝑎 = ∫(-π(,)𝑙)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑠) · (sin‘((𝑏 + (1 / 2)) · 𝑠))) d𝑠
330329fveq2i 6673 . . . . . . . . . 10 (abs‘∫(-π(,)𝑙)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑎) · (sin‘((𝑏 + (1 / 2)) · 𝑎))) d𝑎) = (abs‘∫(-π(,)𝑙)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑠) · (sin‘((𝑏 + (1 / 2)) · 𝑠))) d𝑠)
331330breq1i 5073 . . . . . . . . 9 ((abs‘∫(-π(,)𝑙)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑎) · (sin‘((𝑏 + (1 / 2)) · 𝑎))) d𝑎) < (𝑖 / 2) ↔ (abs‘∫(-π(,)𝑙)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑠) · (sin‘((𝑏 + (1 / 2)) · 𝑠))) d𝑠) < (𝑖 / 2))
332328, 331anbi12i 628 . . . . . . . 8 ((((((𝜑𝑖 ∈ ℝ+) ∧ 𝑙 ∈ (-π(,)0)) ∧ 𝑏 ∈ ℕ) ∧ (abs‘∫(𝑙(,)0)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑎) · (sin‘((𝑏 + (1 / 2)) · 𝑎))) d𝑎) < (𝑖 / 2)) ∧ (abs‘∫(-π(,)𝑙)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑎) · (sin‘((𝑏 + (1 / 2)) · 𝑎))) d𝑎) < (𝑖 / 2)) ↔ (((((𝜑𝑖 ∈ ℝ+) ∧ 𝑙 ∈ (-π(,)0)) ∧ 𝑏 ∈ ℕ) ∧ (abs‘∫(𝑙(,)0)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑠) · (sin‘((𝑏 + (1 / 2)) · 𝑠))) d𝑠) < (𝑖 / 2)) ∧ (abs‘∫(-π(,)𝑙)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑠) · (sin‘((𝑏 + (1 / 2)) · 𝑠))) d𝑠) < (𝑖 / 2)))
33343, 44, 45, 76, 77, 78, 122, 132, 182, 213, 225, 236, 246, 254, 258, 261, 265, 271, 283, 284, 285, 286, 287, 311, 312, 313, 314, 316, 319, 320, 332fourierdlem103 42543 . . . . . . 7 (𝜑 → (𝑚 ∈ ℕ ↦ ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠) ⇝ (𝐿 / 2))
334 nnex 11644 . . . . . . . . . 10 ℕ ∈ V
335334mptex 6986 . . . . . . . . 9 (𝑚 ∈ ℕ ↦ (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))))) ∈ V
33628, 335eqeltri 2909 . . . . . . . 8 𝑍 ∈ V
337336a1i 11 . . . . . . 7 (𝜑𝑍 ∈ V)
338268adantr 483 . . . . . . . . . 10 ((𝑚 = 𝑛𝑠 ∈ (0(,)π)) → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) = ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)))
339338itgeq2dv 24382 . . . . . . . . 9 (𝑚 = 𝑛 → ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠 = ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
340339cbvmptv 5169 . . . . . . . 8 (𝑚 ∈ ℕ ↦ ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠) = (𝑛 ∈ ℕ ↦ ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
341279adantr 483 . . . . . . . . . . 11 ((𝑐 = 𝑘𝑠 ∈ (0(,)π)) → ((𝑧 ∈ (-π[,]π) ↦ (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑐 + (1 / 2)) · 𝑑)))‘𝑧)))‘𝑠) = ((𝑧 ∈ (-π[,]π) ↦ (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑘 + (1 / 2)) · 𝑑)))‘𝑧)))‘𝑠))
342341itgeq2dv 24382 . . . . . . . . . 10 (𝑐 = 𝑘 → ∫(0(,)π)((𝑧 ∈ (-π[,]π) ↦ (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑐 + (1 / 2)) · 𝑑)))‘𝑧)))‘𝑠) d𝑠 = ∫(0(,)π)((𝑧 ∈ (-π[,]π) ↦ (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑘 + (1 / 2)) · 𝑑)))‘𝑧)))‘𝑠) d𝑠)
343342oveq1d 7171 . . . . . . . . 9 (𝑐 = 𝑘 → (∫(0(,)π)((𝑧 ∈ (-π[,]π) ↦ (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑐 + (1 / 2)) · 𝑑)))‘𝑧)))‘𝑠) d𝑠 / π) = (∫(0(,)π)((𝑧 ∈ (-π[,]π) ↦ (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑘 + (1 / 2)) · 𝑑)))‘𝑧)))‘𝑠) d𝑠 / π))
344343cbvmptv 5169 . . . . . . . 8 (𝑐 ∈ ℕ ↦ (∫(0(,)π)((𝑧 ∈ (-π[,]π) ↦ (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑐 + (1 / 2)) · 𝑑)))‘𝑧)))‘𝑠) d𝑠 / π)) = (𝑘 ∈ ℕ ↦ (∫(0(,)π)((𝑧 ∈ (-π[,]π) ↦ (((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑧) · ((𝑑 ∈ (-π[,]π) ↦ (sin‘((𝑘 + (1 / 2)) · 𝑑)))‘𝑧)))‘𝑠) d𝑠 / π))
345 eqid 2821 . . . . . . . 8 ((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟))) ↾ (𝑒[,]π)) = ((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟))) ↾ (𝑒[,]π))
346 eqid 2821 . . . . . . . 8 ({𝑒, π} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (𝑒(,)π))) = ({𝑒, π} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (𝑒(,)π)))
347 eqid 2821 . . . . . . . 8 ((♯‘({𝑒, π} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (𝑒(,)π)))) − 1) = ((♯‘({𝑒, π} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (𝑒(,)π)))) − 1)
348 isoeq1 7070 . . . . . . . . 9 (𝑢 = 𝑣 → (𝑢 Isom < , < ((0...((♯‘({𝑒, π} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (𝑒(,)π)))) − 1)), ({𝑒, π} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (𝑒(,)π)))) ↔ 𝑣 Isom < , < ((0...((♯‘({𝑒, π} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (𝑒(,)π)))) − 1)), ({𝑒, π} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (𝑒(,)π))))))
349348cbviotavw 6322 . . . . . . . 8 (℩𝑢𝑢 Isom < , < ((0...((♯‘({𝑒, π} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (𝑒(,)π)))) − 1)), ({𝑒, π} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (𝑒(,)π))))) = (℩𝑣𝑣 Isom < , < ((0...((♯‘({𝑒, π} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (𝑒(,)π)))) − 1)), ({𝑒, π} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (𝑒(,)π)))))
350 eqid 2821 . . . . . . . 8 (𝑎 ∈ (0..^𝑁)(((℩𝑢𝑢 Isom < , < ((0...((♯‘({𝑒, π} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (𝑒(,)π)))) − 1)), ({𝑒, π} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (𝑒(,)π)))))‘𝑏)(,)((℩𝑢𝑢 Isom < , < ((0...((♯‘({𝑒, π} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (𝑒(,)π)))) − 1)), ({𝑒, π} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (𝑒(,)π)))))‘(𝑏 + 1))) ⊆ (((𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋))‘𝑎)(,)((𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋))‘(𝑎 + 1)))) = (𝑎 ∈ (0..^𝑁)(((℩𝑢𝑢 Isom < , < ((0...((♯‘({𝑒, π} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (𝑒(,)π)))) − 1)), ({𝑒, π} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (𝑒(,)π)))))‘𝑏)(,)((℩𝑢𝑢 Isom < , < ((0...((♯‘({𝑒, π} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (𝑒(,)π)))) − 1)), ({𝑒, π} ∪ (ran (𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋)) ∩ (𝑒(,)π)))))‘(𝑏 + 1))) ⊆ (((𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋))‘𝑎)(,)((𝑗 ∈ (0...𝑁) ↦ ((𝑉𝑗) − 𝑋))‘(𝑎 + 1))))
351324cbvitgv 24377 . . . . . . . . . . . 12 ∫(0(,)𝑒)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑎) · (sin‘((𝑏 + (1 / 2)) · 𝑎))) d𝑎 = ∫(0(,)𝑒)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑠) · (sin‘((𝑏 + (1 / 2)) · 𝑠))) d𝑠
352351fveq2i 6673 . . . . . . . . . . 11 (abs‘∫(0(,)𝑒)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑎) · (sin‘((𝑏 + (1 / 2)) · 𝑎))) d𝑎) = (abs‘∫(0(,)𝑒)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑠) · (sin‘((𝑏 + (1 / 2)) · 𝑠))) d𝑠)
353352breq1i 5073 . . . . . . . . . 10 ((abs‘∫(0(,)𝑒)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑎) · (sin‘((𝑏 + (1 / 2)) · 𝑎))) d𝑎) < (𝑞 / 2) ↔ (abs‘∫(0(,)𝑒)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑠) · (sin‘((𝑏 + (1 / 2)) · 𝑠))) d𝑠) < (𝑞 / 2))
354353anbi2i 624 . . . . . . . . 9 (((((𝜑𝑞 ∈ ℝ+) ∧ 𝑒 ∈ (0(,)π)) ∧ 𝑏 ∈ ℕ) ∧ (abs‘∫(0(,)𝑒)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑎) · (sin‘((𝑏 + (1 / 2)) · 𝑎))) d𝑎) < (𝑞 / 2)) ↔ ((((𝜑𝑞 ∈ ℝ+) ∧ 𝑒 ∈ (0(,)π)) ∧ 𝑏 ∈ ℕ) ∧ (abs‘∫(0(,)𝑒)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑠) · (sin‘((𝑏 + (1 / 2)) · 𝑠))) d𝑠) < (𝑞 / 2)))
355324cbvitgv 24377 . . . . . . . . . . 11 ∫(𝑒(,)π)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑎) · (sin‘((𝑏 + (1 / 2)) · 𝑎))) d𝑎 = ∫(𝑒(,)π)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑠) · (sin‘((𝑏 + (1 / 2)) · 𝑠))) d𝑠
356355fveq2i 6673 . . . . . . . . . 10 (abs‘∫(𝑒(,)π)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑎) · (sin‘((𝑏 + (1 / 2)) · 𝑎))) d𝑎) = (abs‘∫(𝑒(,)π)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑠) · (sin‘((𝑏 + (1 / 2)) · 𝑠))) d𝑠)
357356breq1i 5073 . . . . . . . . 9 ((abs‘∫(𝑒(,)π)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑎) · (sin‘((𝑏 + (1 / 2)) · 𝑎))) d𝑎) < (𝑞 / 2) ↔ (abs‘∫(𝑒(,)π)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑠) · (sin‘((𝑏 + (1 / 2)) · 𝑠))) d𝑠) < (𝑞 / 2))
358354, 357anbi12i 628 . . . . . . . 8 ((((((𝜑𝑞 ∈ ℝ+) ∧ 𝑒 ∈ (0(,)π)) ∧ 𝑏 ∈ ℕ) ∧ (abs‘∫(0(,)𝑒)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑎) · (sin‘((𝑏 + (1 / 2)) · 𝑎))) d𝑎) < (𝑞 / 2)) ∧ (abs‘∫(𝑒(,)π)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑎) · (sin‘((𝑏 + (1 / 2)) · 𝑎))) d𝑎) < (𝑞 / 2)) ↔ (((((𝜑𝑞 ∈ ℝ+) ∧ 𝑒 ∈ (0(,)π)) ∧ 𝑏 ∈ ℕ) ∧ (abs‘∫(0(,)𝑒)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑠) · (sin‘((𝑏 + (1 / 2)) · 𝑠))) d𝑠) < (𝑞 / 2)) ∧ (abs‘∫(𝑒(,)π)(((𝑟 ∈ (-π[,]π) ↦ (((𝑔 ∈ (-π[,]π) ↦ if(𝑔 = 0, 0, (((𝐹‘(𝑋 + 𝑔)) − if(0 < 𝑔, 𝑅, 𝐿)) / 𝑔)))‘𝑟) · ((𝑜 ∈ (-π[,]π) ↦ if(𝑜 = 0, 1, (𝑜 / (2 · (sin‘(𝑜 / 2))))))‘𝑟)))‘𝑠) · (sin‘((𝑏 + (1 / 2)) · 𝑠))) d𝑠) < (𝑞 / 2)))
35943, 44, 45, 76, 77, 78, 122, 132, 182, 213, 225, 236, 246, 254, 258, 261, 265, 340, 344, 284, 285, 286, 287, 311, 345, 346, 347, 349, 319, 350, 358fourierdlem104 42544 . . . . . . 7 (𝜑 → (𝑚 ∈ ℕ ↦ ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠) ⇝ (𝑅 / 2))
360 eqidd 2822 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑚 ∈ ℕ ↦ ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠) = (𝑚 ∈ ℕ ↦ ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠))
361270adantl 484 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 = 𝑛) → ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠 = ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
362 simpr 487 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
363 elioore 12769 . . . . . . . . . . 11 (𝑠 ∈ (-π(,)0) → 𝑠 ∈ ℝ)
36443adantr 483 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ ℝ) → 𝐹:ℝ⟶ℝ)
36544adantr 483 . . . . . . . . . . . . . . 15 ((𝜑𝑠 ∈ ℝ) → 𝑋 ∈ ℝ)
366 simpr 487 . . . . . . . . . . . . . . 15 ((𝜑𝑠 ∈ ℝ) → 𝑠 ∈ ℝ)
367365, 366readdcld 10670 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ ℝ) → (𝑋 + 𝑠) ∈ ℝ)
368364, 367ffvelrnd 6852 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ ℝ) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
369368adantlr 713 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ ℝ) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
370288dirkerre 42429 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ ℝ) → ((𝐷𝑛)‘𝑠) ∈ ℝ)
371370adantll 712 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ ℝ) → ((𝐷𝑛)‘𝑠) ∈ ℝ)
372369, 371remulcld 10671 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ ℝ) → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) ∈ ℝ)
373363, 372sylan2 594 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π(,)0)) → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) ∈ ℝ)
374 ioossicc 12823 . . . . . . . . . . . . 13 (-π(,)0) ⊆ (-π[,]0)
37561leidi 11174 . . . . . . . . . . . . . 14 -π ≤ -π
37662, 54, 60ltleii 10763 . . . . . . . . . . . . . 14 0 ≤ π
377 iccss 12805 . . . . . . . . . . . . . 14 (((-π ∈ ℝ ∧ π ∈ ℝ) ∧ (-π ≤ -π ∧ 0 ≤ π)) → (-π[,]0) ⊆ (-π[,]π))
37861, 54, 375, 376, 377mp4an 691 . . . . . . . . . . . . 13 (-π[,]0) ⊆ (-π[,]π)
379374, 378sstri 3976 . . . . . . . . . . . 12 (-π(,)0) ⊆ (-π[,]π)
380379a1i 11 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (-π(,)0) ⊆ (-π[,]π))
381 ioombl 24166 . . . . . . . . . . . 12 (-π(,)0) ∈ dom vol
382381a1i 11 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (-π(,)0) ∈ dom vol)
38343adantr 483 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ (-π[,]π)) → 𝐹:ℝ⟶ℝ)
38444adantr 483 . . . . . . . . . . . . . . 15 ((𝜑𝑠 ∈ (-π[,]π)) → 𝑋 ∈ ℝ)
38556, 55iccssred 41829 . . . . . . . . . . . . . . . 16 (𝜑 → (-π[,]π) ⊆ ℝ)
386385sselda 3967 . . . . . . . . . . . . . . 15 ((𝜑𝑠 ∈ (-π[,]π)) → 𝑠 ∈ ℝ)
387384, 386readdcld 10670 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ (-π[,]π)) → (𝑋 + 𝑠) ∈ ℝ)
388383, 387ffvelrnd 6852 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (-π[,]π)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
389388adantlr 713 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
390 iccssre 12819 . . . . . . . . . . . . . . . 16 ((-π ∈ ℝ ∧ π ∈ ℝ) → (-π[,]π) ⊆ ℝ)
39161, 54, 390mp2an 690 . . . . . . . . . . . . . . 15 (-π[,]π) ⊆ ℝ
392391sseli 3963 . . . . . . . . . . . . . 14 (𝑠 ∈ (-π[,]π) → 𝑠 ∈ ℝ)
393392, 370sylan2 594 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → ((𝐷𝑛)‘𝑠) ∈ ℝ)
394393adantll 712 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((𝐷𝑛)‘𝑠) ∈ ℝ)
395389, 394remulcld 10671 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) ∈ ℝ)
39661a1i 11 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → -π ∈ ℝ)
39754a1i 11 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → π ∈ ℝ)
39843adantr 483 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝐹:ℝ⟶ℝ)
39944adantr 483 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝑋 ∈ ℝ)
40076adantr 483 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝑁 ∈ ℕ)
40177adantr 483 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝑉 ∈ ((𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝𝑛) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})‘𝑁))
402122adantlr 713 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑁)) → (𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
403225adantlr 713 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑁)) → if(((𝑑 ∈ (-π(,]π) ↦ if(𝑑 = π, -π, 𝑑))‘((𝑐 ∈ ℝ ↦ (𝑐 + ((⌊‘((π − 𝑐) / 𝑇)) · 𝑇)))‘(𝑉𝑖))) = (𝑄‘((𝑦 ∈ ℝ ↦ sup({𝑓 ∈ (0..^𝑀) ∣ (𝑄𝑓) ≤ ((𝑑 ∈ (-π(,]π) ↦ if(𝑑 = π, -π, 𝑑))‘((𝑐 ∈ ℝ ↦ (𝑐 + ((⌊‘((π − 𝑐) / 𝑇)) · 𝑇)))‘𝑦))}, ℝ, < ))‘(𝑉𝑖))), ((𝑗 ∈ (0..^𝑀) ↦ 𝑗 / 𝑖𝐶)‘((𝑦 ∈ ℝ ↦ sup({𝑓 ∈ (0..^𝑀) ∣ (𝑄𝑓) ≤ ((𝑑 ∈ (-π(,]π) ↦ if(𝑑 = π, -π, 𝑑))‘((𝑐 ∈ ℝ ↦ (𝑐 + ((⌊‘((π − 𝑐) / 𝑇)) · 𝑇)))‘𝑦))}, ℝ, < ))‘(𝑉𝑖))), (𝐹‘((𝑑 ∈ (-π(,]π) ↦ if(𝑑 = π, -π, 𝑑))‘((𝑐 ∈ ℝ ↦ (𝑐 + ((⌊‘((π − 𝑐) / 𝑇)) · 𝑇)))‘(𝑉𝑖))))) ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉𝑖)))
404236adantlr 713 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑁)) → if(((𝑒 ∈ ℝ ↦ (𝑒 + ((⌊‘((π − 𝑒) / 𝑇)) · 𝑇)))‘(𝑉‘(𝑖 + 1))) = (𝑄‘(((𝑦 ∈ ℝ ↦ sup({ ∈ (0..^𝑀) ∣ (𝑄) ≤ ((𝑔 ∈ (-π(,]π) ↦ if(𝑔 = π, -π, 𝑔))‘((𝑒 ∈ ℝ ↦ (𝑒 + ((⌊‘((π − 𝑒) / 𝑇)) · 𝑇)))‘𝑦))}, ℝ, < ))‘(𝑉𝑖)) + 1)), ((𝑗 ∈ (0..^𝑀) ↦ 𝑗 / 𝑖𝑈)‘((𝑦 ∈ ℝ ↦ sup({ ∈ (0..^𝑀) ∣ (𝑄) ≤ ((𝑔 ∈ (-π(,]π) ↦ if(𝑔 = π, -π, 𝑔))‘((𝑒 ∈ ℝ ↦ (𝑒 + ((⌊‘((π − 𝑒) / 𝑇)) · 𝑇)))‘𝑦))}, ℝ, < ))‘(𝑉𝑖))), (𝐹‘((𝑒 ∈ ℝ ↦ (𝑒 + ((⌊‘((π − 𝑒) / 𝑇)) · 𝑇)))‘(𝑉‘(𝑖 + 1))))) ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉‘(𝑖 + 1))))
405288dirkercncf 42441 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (𝐷𝑛) ∈ (ℝ–cn→ℝ))
406405adantl 484 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (𝐷𝑛) ∈ (ℝ–cn→ℝ))
407 eqid 2821 . . . . . . . . . . . 12 (𝑠 ∈ (-π[,]π) ↦ ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠))) = (𝑠 ∈ (-π[,]π) ↦ ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)))
408396, 397, 398, 399, 45, 400, 401, 402, 403, 404, 319, 51, 406, 407fourierdlem84 42524 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (-π[,]π) ↦ ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠))) ∈ 𝐿1)
409380, 382, 395, 408iblss 24405 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (-π(,)0) ↦ ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠))) ∈ 𝐿1)
410373, 409itgcl 24384 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠 ∈ ℂ)
411360, 361, 362, 410fvmptd 6775 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠)‘𝑛) = ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
412411, 410eqeltrd 2913 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠)‘𝑛) ∈ ℂ)
413 eqidd 2822 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑚 ∈ ℕ ↦ ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠) = (𝑚 ∈ ℕ ↦ ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠))
414339adantl 484 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 = 𝑛) → ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠 = ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
41543adantr 483 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (0(,)π)) → 𝐹:ℝ⟶ℝ)
41644adantr 483 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ (0(,)π)) → 𝑋 ∈ ℝ)
417 elioore 12769 . . . . . . . . . . . . . . 15 (𝑠 ∈ (0(,)π) → 𝑠 ∈ ℝ)
418417adantl 484 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ (0(,)π)) → 𝑠 ∈ ℝ)
419416, 418readdcld 10670 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (0(,)π)) → (𝑋 + 𝑠) ∈ ℝ)
420415, 419ffvelrnd 6852 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (0(,)π)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
421420adantlr 713 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (0(,)π)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
422417, 370sylan2 594 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (0(,)π)) → ((𝐷𝑛)‘𝑠) ∈ ℝ)
423422adantll 712 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (0(,)π)) → ((𝐷𝑛)‘𝑠) ∈ ℝ)
424421, 423remulcld 10671 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (0(,)π)) → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) ∈ ℝ)
425 ioossicc 12823 . . . . . . . . . . . . 13 (0(,)π) ⊆ (0[,]π)
42661, 62, 59ltleii 10763 . . . . . . . . . . . . . 14 -π ≤ 0
42754leidi 11174 . . . . . . . . . . . . . 14 π ≤ π
428 iccss 12805 . . . . . . . . . . . . . 14 (((-π ∈ ℝ ∧ π ∈ ℝ) ∧ (-π ≤ 0 ∧ π ≤ π)) → (0[,]π) ⊆ (-π[,]π))
42961, 54, 426, 427, 428mp4an 691 . . . . . . . . . . . . 13 (0[,]π) ⊆ (-π[,]π)
430425, 429sstri 3976 . . . . . . . . . . . 12 (0(,)π) ⊆ (-π[,]π)
431430a1i 11 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (0(,)π) ⊆ (-π[,]π))
432 ioombl 24166 . . . . . . . . . . . 12 (0(,)π) ∈ dom vol
433432a1i 11 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (0(,)π) ∈ dom vol)
434431, 433, 395, 408iblss 24405 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (0(,)π) ↦ ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠))) ∈ 𝐿1)
435424, 434itgcl 24384 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠 ∈ ℂ)
436413, 414, 362, 435fvmptd 6775 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠)‘𝑛) = ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
437436, 435eqeltrd 2913 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠)‘𝑛) ∈ ℂ)
438 eleq1w 2895 . . . . . . . . . . 11 (𝑚 = 𝑛 → (𝑚 ∈ ℕ ↔ 𝑛 ∈ ℕ))
439438anbi2d 630 . . . . . . . . . 10 (𝑚 = 𝑛 → ((𝜑𝑚 ∈ ℕ) ↔ (𝜑𝑛 ∈ ℕ)))
440 fveq2 6670 . . . . . . . . . . 11 (𝑚 = 𝑛 → (𝑍𝑚) = (𝑍𝑛))
441270, 339oveq12d 7174 . . . . . . . . . . 11 (𝑚 = 𝑛 → (∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠 + ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠) = (∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠 + ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠))
442440, 441eqeq12d 2837 . . . . . . . . . 10 (𝑚 = 𝑛 → ((𝑍𝑚) = (∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠 + ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠) ↔ (𝑍𝑛) = (∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠 + ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)))
443439, 442imbi12d 347 . . . . . . . . 9 (𝑚 = 𝑛 → (((𝜑𝑚 ∈ ℕ) → (𝑍𝑚) = (∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠 + ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠)) ↔ ((𝜑𝑛 ∈ ℕ) → (𝑍𝑛) = (∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠 + ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠))))
444 oveq1 7163 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑚 → (𝑛 · 𝑥) = (𝑚 · 𝑥))
445444fveq2d 6674 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑚 → (cos‘(𝑛 · 𝑥)) = (cos‘(𝑚 · 𝑥)))
446445oveq2d 7172 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → ((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) = ((𝐹𝑥) · (cos‘(𝑚 · 𝑥))))
447446adantr 483 . . . . . . . . . . . . . 14 ((𝑛 = 𝑚𝑥 ∈ (-π(,)π)) → ((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) = ((𝐹𝑥) · (cos‘(𝑚 · 𝑥))))
448447itgeq2dv 24382 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → ∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 = ∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑚 · 𝑥))) d𝑥)
449448oveq1d 7171 . . . . . . . . . . . 12 (𝑛 = 𝑚 → (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π) = (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑚 · 𝑥))) d𝑥 / π))
450449cbvmptv 5169 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π)) = (𝑚 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑚 · 𝑥))) d𝑥 / π))
45129, 450eqtri 2844 . . . . . . . . . 10 𝐴 = (𝑚 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑚 · 𝑥))) d𝑥 / π))
452 fourierdlem112.b . . . . . . . . . . 11 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π))
453444fveq2d 6674 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑚 → (sin‘(𝑛 · 𝑥)) = (sin‘(𝑚 · 𝑥)))
454453oveq2d 7172 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → ((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) = ((𝐹𝑥) · (sin‘(𝑚 · 𝑥))))
455454adantr 483 . . . . . . . . . . . . . 14 ((𝑛 = 𝑚𝑥 ∈ (-π(,)π)) → ((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) = ((𝐹𝑥) · (sin‘(𝑚 · 𝑥))))
456455itgeq2dv 24382 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → ∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 = ∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑚 · 𝑥))) d𝑥)
457456oveq1d 7171 . . . . . . . . . . . 12 (𝑛 = 𝑚 → (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π) = (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑚 · 𝑥))) d𝑥 / π))
458457cbvmptv 5169 . . . . . . . . . . 11 (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π)) = (𝑚 ∈ ℕ ↦ (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑚 · 𝑥))) d𝑥 / π))
459452, 458eqtri 2844 . . . . . . . . . 10 𝐵 = (𝑚 ∈ ℕ ↦ (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑚 · 𝑥))) d𝑥 / π))
460 fveq2 6670 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑘 → (𝐴𝑛) = (𝐴𝑘))
461 oveq1 7163 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑘 → (𝑛 · 𝑋) = (𝑘 · 𝑋))
462461fveq2d 6674 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑘 → (cos‘(𝑛 · 𝑋)) = (cos‘(𝑘 · 𝑋)))
463460, 462oveq12d 7174 . . . . . . . . . . . . . . 15 (𝑛 = 𝑘 → ((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) = ((𝐴𝑘) · (cos‘(𝑘 · 𝑋))))
464 fveq2 6670 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑘 → (𝐵𝑛) = (𝐵𝑘))
465461fveq2d 6674 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑘 → (sin‘(𝑛 · 𝑋)) = (sin‘(𝑘 · 𝑋)))
466464, 465oveq12d 7174 . . . . . . . . . . . . . . 15 (𝑛 = 𝑘 → ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))) = ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))
467463, 466oveq12d 7174 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))) = (((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))
468467cbvsumv 15053 . . . . . . . . . . . . 13 Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))) = Σ𝑘 ∈ (1...𝑚)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))
469468oveq2i 7167 . . . . . . . . . . . 12 (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = (((𝐴‘0) / 2) + Σ𝑘 ∈ (1...𝑚)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))
470469mpteq2i 5158 . . . . . . . . . . 11 (𝑚 ∈ ℕ ↦ (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))))) = (𝑚 ∈ ℕ ↦ (((𝐴‘0) / 2) + Σ𝑘 ∈ (1...𝑚)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))))
471 oveq2 7164 . . . . . . . . . . . . . . 15 (𝑚 = 𝑛 → (1...𝑚) = (1...𝑛))
472471sumeq1d 15058 . . . . . . . . . . . . . 14 (𝑚 = 𝑛 → Σ𝑘 ∈ (1...𝑚)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) = Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))
473472oveq2d 7172 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → (((𝐴‘0) / 2) + Σ𝑘 ∈ (1...𝑚)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))) = (((𝐴‘0) / 2) + Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))))
474473cbvmptv 5169 . . . . . . . . . . . 12 (𝑚 ∈ ℕ ↦ (((𝐴‘0) / 2) + Σ𝑘 ∈ (1...𝑚)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))) = (𝑛 ∈ ℕ ↦ (((𝐴‘0) / 2) + Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))))
475 fveq2 6670 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑚 → (𝐴𝑘) = (𝐴𝑚))
476 oveq1 7163 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑚 → (𝑘 · 𝑋) = (𝑚 · 𝑋))
477476fveq2d 6674 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑚 → (cos‘(𝑘 · 𝑋)) = (cos‘(𝑚 · 𝑋)))
478475, 477oveq12d 7174 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑚 → ((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) = ((𝐴𝑚) · (cos‘(𝑚 · 𝑋))))
479 fveq2 6670 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑚 → (𝐵𝑘) = (𝐵𝑚))
480476fveq2d 6674 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑚 → (sin‘(𝑘 · 𝑋)) = (sin‘(𝑚 · 𝑋)))
481479, 480oveq12d 7174 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑚 → ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))) = ((𝐵𝑚) · (sin‘(𝑚 · 𝑋))))
482478, 481oveq12d 7174 . . . . . . . . . . . . . . 15 (𝑘 = 𝑚 → (((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) = (((𝐴𝑚) · (cos‘(𝑚 · 𝑋))) + ((𝐵𝑚) · (sin‘(𝑚 · 𝑋)))))
483482cbvsumv 15053 . . . . . . . . . . . . . 14 Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) = Σ𝑚 ∈ (1...𝑛)(((𝐴𝑚) · (cos‘(𝑚 · 𝑋))) + ((𝐵𝑚) · (sin‘(𝑚 · 𝑋))))
484483oveq2i 7167 . . . . . . . . . . . . 13 (((𝐴‘0) / 2) + Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))) = (((𝐴‘0) / 2) + Σ𝑚 ∈ (1...𝑛)(((𝐴𝑚) · (cos‘(𝑚 · 𝑋))) + ((𝐵𝑚) · (sin‘(𝑚 · 𝑋)))))
485484mpteq2i 5158 . . . . . . . . . . . 12 (𝑛 ∈ ℕ ↦ (((𝐴‘0) / 2) + Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))) = (𝑛 ∈ ℕ ↦ (((𝐴‘0) / 2) + Σ𝑚 ∈ (1...𝑛)(((𝐴𝑚) · (cos‘(𝑚 · 𝑋))) + ((𝐵𝑚) · (sin‘(𝑚 · 𝑋))))))
486474, 485eqtri 2844 . . . . . . . . . . 11 (𝑚 ∈ ℕ ↦ (((𝐴‘0) / 2) + Σ𝑘 ∈ (1...𝑚)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))) = (𝑛 ∈ ℕ ↦ (((𝐴‘0) / 2) + Σ𝑚 ∈ (1...𝑛)(((𝐴𝑚) · (cos‘(𝑚 · 𝑋))) + ((𝐵𝑚) · (sin‘(𝑚 · 𝑋))))))
48728, 470, 4863eqtri 2848 . . . . . . . . . 10 𝑍 = (𝑛 ∈ ℕ ↦ (((𝐴‘0) / 2) + Σ𝑚 ∈ (1...𝑛)(((𝐴𝑚) · (cos‘(𝑚 · 𝑋))) + ((𝐵𝑚) · (sin‘(𝑚 · 𝑋))))))
488 oveq2 7164 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → (𝑋 + 𝑦) = (𝑋 + 𝑥))
489488fveq2d 6674 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (𝐹‘(𝑋 + 𝑦)) = (𝐹‘(𝑋 + 𝑥)))
490 fveq2 6670 . . . . . . . . . . . 12 (𝑦 = 𝑥 → ((𝐷𝑚)‘𝑦) = ((𝐷𝑚)‘𝑥))
491489, 490oveq12d 7174 . . . . . . . . . . 11 (𝑦 = 𝑥 → ((𝐹‘(𝑋 + 𝑦)) · ((𝐷𝑚)‘𝑦)) = ((𝐹‘(𝑋 + 𝑥)) · ((𝐷𝑚)‘𝑥)))
492491cbvmptv 5169 . . . . . . . . . 10 (𝑦 ∈ ℝ ↦ ((𝐹‘(𝑋 + 𝑦)) · ((𝐷𝑚)‘𝑦))) = (𝑥 ∈ ℝ ↦ ((𝐹‘(𝑋 + 𝑥)) · ((𝐷𝑚)‘𝑥)))
493 eqid 2821 . . . . . . . . . 10 (𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = (-π − 𝑋) ∧ (𝑝𝑛) = (π − 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))}) = (𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = (-π − 𝑋) ∧ (𝑝𝑛) = (π − 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
494 fveq2 6670 . . . . . . . . . . . 12 (𝑗 = 𝑖 → (𝑄𝑗) = (𝑄𝑖))
495494oveq1d 7171 . . . . . . . . . . 11 (𝑗 = 𝑖 → ((𝑄𝑗) − 𝑋) = ((𝑄𝑖) − 𝑋))
496495cbvmptv 5169 . . . . . . . . . 10 (𝑗 ∈ (0...𝑀) ↦ ((𝑄𝑗) − 𝑋)) = (𝑖 ∈ (0...𝑀) ↦ ((𝑄𝑖) − 𝑋))
497451, 459, 487, 288, 51, 52, 53, 146, 43, 92, 492, 103, 222, 233, 48, 493, 496fourierdlem111 42551 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → (𝑍𝑚) = (∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠 + ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠))
498443, 497chvarvv 2005 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝑍𝑛) = (∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠 + ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠))
499411, 436oveq12d 7174 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (((𝑚 ∈ ℕ ↦ ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠)‘𝑛) + ((𝑚 ∈ ℕ ↦ ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠)‘𝑛)) = (∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠 + ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠))
500498, 499eqtr4d 2859 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝑍𝑛) = (((𝑚 ∈ ℕ ↦ ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠)‘𝑛) + ((𝑚 ∈ ℕ ↦ ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠)‘𝑛)))
50116, 24, 27, 42, 14, 15, 333, 337, 359, 412, 437, 500climaddf 41945 . . . . . 6 (𝜑𝑍 ⇝ ((𝐿 / 2) + (𝑅 / 2)))
502 limccl 24473 . . . . . . . 8 ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋) ⊆ ℂ
503502, 285sseldi 3965 . . . . . . 7 (𝜑𝐿 ∈ ℂ)
504 limccl 24473 . . . . . . . 8 ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ⊆ ℂ
505504, 284sseldi 3965 . . . . . . 7 (𝜑𝑅 ∈ ℂ)
506 2cnd 11716 . . . . . . 7 (𝜑 → 2 ∈ ℂ)
507 2pos 11741 . . . . . . . . 9 0 < 2
508507a1i 11 . . . . . . . 8 (𝜑 → 0 < 2)
509508gt0ne0d 11204 . . . . . . 7 (𝜑 → 2 ≠ 0)
510503, 505, 506, 509divdird 11454 . . . . . 6 (𝜑 → ((𝐿 + 𝑅) / 2) = ((𝐿 / 2) + (𝑅 / 2)))
511501, 510breqtrrd 5094 . . . . 5 (𝜑𝑍 ⇝ ((𝐿 + 𝑅) / 2))
512 0nn0 11913 . . . . . . . 8 0 ∈ ℕ0
51343adantr 483 . . . . . . . . . 10 ((𝜑 ∧ 0 ∈ ℕ0) → 𝐹:ℝ⟶ℝ)
514 eqid 2821 . . . . . . . . . 10 (-π(,)π) = (-π(,)π)
515 ioossre 12799 . . . . . . . . . . . . . 14 (-π(,)π) ⊆ ℝ
516515a1i 11 . . . . . . . . . . . . 13 (𝜑 → (-π(,)π) ⊆ ℝ)
51743, 516feqresmpt 6734 . . . . . . . . . . . 12 (𝜑 → (𝐹 ↾ (-π(,)π)) = (𝑥 ∈ (-π(,)π) ↦ (𝐹𝑥)))
518 ioossicc 12823 . . . . . . . . . . . . . 14 (-π(,)π) ⊆ (-π[,]π)
519518a1i 11 . . . . . . . . . . . . 13 (𝜑 → (-π(,)π) ⊆ (-π[,]π))
520 ioombl 24166 . . . . . . . . . . . . . 14 (-π(,)π) ∈ dom vol
521520a1i 11 . . . . . . . . . . . . 13 (𝜑 → (-π(,)π) ∈ dom vol)
52243adantr 483 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (-π[,]π)) → 𝐹:ℝ⟶ℝ)
523385sselda 3967 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (-π[,]π)) → 𝑥 ∈ ℝ)
524522, 523ffvelrnd 6852 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (-π[,]π)) → (𝐹𝑥) ∈ ℝ)
52543, 385feqresmpt 6734 . . . . . . . . . . . . . 14 (𝜑 → (𝐹 ↾ (-π[,]π)) = (𝑥 ∈ (-π[,]π) ↦ (𝐹𝑥)))
526178a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → ℝ ⊆ ℂ)
52743, 526fssd 6528 . . . . . . . . . . . . . . . 16 (𝜑𝐹:ℝ⟶ℂ)
528527, 385fssresd 6545 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹 ↾ (-π[,]π)):(-π[,]π)⟶ℂ)
529 ioossicc 12823 . . . . . . . . . . . . . . . . . 18 ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))
53061rexri 10699 . . . . . . . . . . . . . . . . . . . 20 -π ∈ ℝ*
531530a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → -π ∈ ℝ*)
53254rexri 10699 . . . . . . . . . . . . . . . . . . . 20 π ∈ ℝ*
533532a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → π ∈ ℝ*)
53451, 52, 53fourierdlem15 42456 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑄:(0...𝑀)⟶(-π[,]π))
535534adantr 483 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶(-π[,]π))
536 simpr 487 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0..^𝑀))
537531, 533, 535, 536fourierdlem8 42449 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ⊆ (-π[,]π))
538529, 537sstrid 3978 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ (-π[,]π))
539538resabs1d 5884 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ (-π[,]π)) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
540539, 103eqeltrd 2913 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ (-π[,]π)) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
541539eqcomd 2827 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝐹 ↾ (-π[,]π)) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
542541oveq1d 7171 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)) = (((𝐹 ↾ (-π[,]π)) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
543222, 542eleqtrd 2915 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐶 ∈ (((𝐹 ↾ (-π[,]π)) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
544541oveq1d 7171 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))) = (((𝐹 ↾ (-π[,]π)) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
545233, 544eleqtrd 2915 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑈 ∈ (((𝐹 ↾ (-π[,]π)) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
54651, 52, 53, 528, 540, 543, 545fourierdlem69 42509 . . . . . . . . . . . . . 14 (𝜑 → (𝐹 ↾ (-π[,]π)) ∈ 𝐿1)
547525, 546eqeltrrd 2914 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ (-π[,]π) ↦ (𝐹𝑥)) ∈ 𝐿1)
548519, 521, 524, 547iblss 24405 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ (-π(,)π) ↦ (𝐹𝑥)) ∈ 𝐿1)
549517, 548eqeltrd 2913 . . . . . . . . . . 11 (𝜑 → (𝐹 ↾ (-π(,)π)) ∈ 𝐿1)
550549adantr 483 . . . . . . . . . 10 ((𝜑 ∧ 0 ∈ ℕ0) → (𝐹 ↾ (-π(,)π)) ∈ 𝐿1)
551 simpr 487 . . . . . . . . . 10 ((𝜑 ∧ 0 ∈ ℕ0) → 0 ∈ ℕ0)
552513, 514, 550, 29, 551fourierdlem16 42457 . . . . . . . . 9 ((𝜑 ∧ 0 ∈ ℕ0) → (((𝐴‘0) ∈ ℝ ∧ (𝑥 ∈ (-π(,)π) ↦ (𝐹𝑥)) ∈ 𝐿1) ∧ ∫(-π(,)π)((𝐹𝑥) · (cos‘(0 · 𝑥))) d𝑥 ∈ ℝ))
553552simplld 766 . . . . . . . 8 ((𝜑 ∧ 0 ∈ ℕ0) → (𝐴‘0) ∈ ℝ)
554512, 553mpan2 689 . . . . . . 7 (𝜑 → (𝐴‘0) ∈ ℝ)
555554rehalfcld 11885 . . . . . 6 (𝜑 → ((𝐴‘0) / 2) ∈ ℝ)
556555recnd 10669 . . . . 5 (𝜑 → ((𝐴‘0) / 2) ∈ ℂ)
557334mptex 6986 . . . . . 6 (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))) ∈ V
558557a1i 11 . . . . 5 (𝜑 → (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))) ∈ V)
559 simpr 487 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℕ)
560555adantr 483 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → ((𝐴‘0) / 2) ∈ ℝ)
561 fzfid 13342 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → (1...𝑚) ∈ Fin)
562 simpll 765 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑚)) → 𝜑)
563 elfznn 12937 . . . . . . . . . . . 12 (𝑛 ∈ (1...𝑚) → 𝑛 ∈ ℕ)
564563adantl 484 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑚)) → 𝑛 ∈ ℕ)
565 simpl 485 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → 𝜑)
566362nnnn0d 11956 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0)
567 eleq1w 2895 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑛 → (𝑘 ∈ ℕ0𝑛 ∈ ℕ0))
568567anbi2d 630 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑛 → ((𝜑𝑘 ∈ ℕ0) ↔ (𝜑𝑛 ∈ ℕ0)))
569 fveq2 6670 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑛 → (𝐴𝑘) = (𝐴𝑛))
570569eleq1d 2897 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑛 → ((𝐴𝑘) ∈ ℝ ↔ (𝐴𝑛) ∈ ℝ))
571568, 570imbi12d 347 . . . . . . . . . . . . . . 15 (𝑘 = 𝑛 → (((𝜑𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℝ) ↔ ((𝜑𝑛 ∈ ℕ0) → (𝐴𝑛) ∈ ℝ)))
57243adantr 483 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ ℕ0) → 𝐹:ℝ⟶ℝ)
573549adantr 483 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ ℕ0) → (𝐹 ↾ (-π(,)π)) ∈ 𝐿1)
574 simpr 487 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
575572, 514, 573, 29, 574fourierdlem16 42457 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ0) → (((𝐴𝑘) ∈ ℝ ∧ (𝑥 ∈ (-π(,)π) ↦ (𝐹𝑥)) ∈ 𝐿1) ∧ ∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑘 · 𝑥))) d𝑥 ∈ ℝ))
576575simplld 766 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℝ)
577571, 576chvarvv 2005 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ0) → (𝐴𝑛) ∈ ℝ)
578565, 566, 577syl2anc 586 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (𝐴𝑛) ∈ ℝ)
579362nnred 11653 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℝ)
580579, 399remulcld 10671 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → (𝑛 · 𝑋) ∈ ℝ)
581580recoscld 15497 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (cos‘(𝑛 · 𝑋)) ∈ ℝ)
582578, 581remulcld 10671 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → ((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) ∈ ℝ)
583 eleq1w 2895 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑛 → (𝑘 ∈ ℕ ↔ 𝑛 ∈ ℕ))
584583anbi2d 630 . . . . . . . . . . . . . . 15 (𝑘 = 𝑛 → ((𝜑𝑘 ∈ ℕ) ↔ (𝜑𝑛 ∈ ℕ)))
585 fveq2 6670 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑛 → (𝐵𝑘) = (𝐵𝑛))
586585eleq1d 2897 . . . . . . . . . . . . . . 15 (𝑘 = 𝑛 → ((𝐵𝑘) ∈ ℝ ↔ (𝐵𝑛) ∈ ℝ))
587584, 586imbi12d 347 . . . . . . . . . . . . . 14 (𝑘 = 𝑛 → (((𝜑𝑘 ∈ ℕ) → (𝐵𝑘) ∈ ℝ) ↔ ((𝜑𝑛 ∈ ℕ) → (𝐵𝑛) ∈ ℝ)))
58843adantr 483 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ) → 𝐹:ℝ⟶ℝ)
589549adantr 483 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ) → (𝐹 ↾ (-π(,)π)) ∈ 𝐿1)
590 simpr 487 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
591588, 514, 589, 452, 590fourierdlem21 42462 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → (((𝐵𝑘) ∈ ℝ ∧ (𝑥 ∈ (-π(,)π) ↦ ((𝐹𝑥) · (sin‘(𝑘 · 𝑥)))) ∈ 𝐿1) ∧ ∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑘 · 𝑥))) d𝑥 ∈ ℝ))
592591simplld 766 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → (𝐵𝑘) ∈ ℝ)
593587, 592chvarvv 2005 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (𝐵𝑛) ∈ ℝ)
594580resincld 15496 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (sin‘(𝑛 · 𝑋)) ∈ ℝ)
595593, 594remulcld 10671 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))) ∈ ℝ)
596582, 595readdcld 10670 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))) ∈ ℝ)
597562, 564, 596syl2anc 586 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑚)) → (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))) ∈ ℝ)
598561, 597fsumrecl 15091 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))) ∈ ℝ)
599560, 598readdcld 10670 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) ∈ ℝ)
60028fvmpt2 6779 . . . . . . . 8 ((𝑚 ∈ ℕ ∧ (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) ∈ ℝ) → (𝑍𝑚) = (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))))
601559, 599, 600syl2anc 586 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → (𝑍𝑚) = (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))))
602601, 599eqeltrd 2913 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → (𝑍𝑚) ∈ ℝ)
603602recnd 10669 . . . . 5 ((𝜑𝑚 ∈ ℕ) → (𝑍𝑚) ∈ ℂ)
604 eqidd 2822 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))) = (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))))
605 oveq2 7164 . . . . . . . . 9 (𝑛 = 𝑚 → (1...𝑛) = (1...𝑚))
606605sumeq1d 15058 . . . . . . . 8 (𝑛 = 𝑚 → Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) = Σ𝑘 ∈ (1...𝑚)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))
607606adantl 484 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑛 = 𝑚) → Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) = Σ𝑘 ∈ (1...𝑚)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))
608 sumex 15044 . . . . . . . 8 Σ𝑘 ∈ (1...𝑚)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) ∈ V
609608a1i 11 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → Σ𝑘 ∈ (1...𝑚)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) ∈ V)
610604, 607, 559, 609fvmptd 6775 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))‘𝑚) = Σ𝑘 ∈ (1...𝑚)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))
611560recnd 10669 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → ((𝐴‘0) / 2) ∈ ℂ)
612598recnd 10669 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))) ∈ ℂ)
613611, 612pncan2d 10999 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → ((((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) − ((𝐴‘0) / 2)) = Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))))
614613, 468syl6req 2873 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → Σ𝑘 ∈ (1...𝑚)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) = ((((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) − ((𝐴‘0) / 2)))
615 ovex 7189 . . . . . . . . 9 (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) ∈ V
61628fvmpt2 6779 . . . . . . . . 9 ((𝑚 ∈ ℕ ∧ (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) ∈ V) → (𝑍𝑚) = (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))))
617559, 615, 616sylancl 588 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → (𝑍𝑚) = (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))))
618617eqcomd 2827 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = (𝑍𝑚))
619618oveq1d 7171 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → ((((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) − ((𝐴‘0) / 2)) = ((𝑍𝑚) − ((𝐴‘0) / 2)))
620610, 614, 6193eqtrd 2860 . . . . 5 ((𝜑𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))‘𝑚) = ((𝑍𝑚) − ((𝐴‘0) / 2)))
62114, 15, 511, 556, 558, 603, 620climsubc1 14994 . . . 4 (𝜑 → (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2)))
622 seqex 13372 . . . . . 6 seq1( + , (𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋)))))) ∈ V
623622a1i 11 . . . . 5 (𝜑 → seq1( + , (𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋)))))) ∈ V)
624 eqidd 2822 . . . . . . 7 ((𝜑𝑙 ∈ ℕ) → (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))) = (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))))
625 oveq2 7164 . . . . . . . . 9 (𝑛 = 𝑙 → (1...𝑛) = (1...𝑙))
626625sumeq1d 15058 . . . . . . . 8 (𝑛 = 𝑙 → Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) = Σ𝑘 ∈ (1...𝑙)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))
627626adantl 484 . . . . . . 7 (((𝜑𝑙 ∈ ℕ) ∧ 𝑛 = 𝑙) → Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) = Σ𝑘 ∈ (1...𝑙)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))
628 simpr 487 . . . . . . 7 ((𝜑𝑙 ∈ ℕ) → 𝑙 ∈ ℕ)
629 fzfid 13342 . . . . . . . 8 ((𝜑𝑙 ∈ ℕ) → (1...𝑙) ∈ Fin)
630 elfznn 12937 . . . . . . . . . . . . 13 (𝑘 ∈ (1...𝑙) → 𝑘 ∈ ℕ)
631630nnnn0d 11956 . . . . . . . . . . . 12 (𝑘 ∈ (1...𝑙) → 𝑘 ∈ ℕ0)
632631, 576sylan2 594 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (1...𝑙)) → (𝐴𝑘) ∈ ℝ)
633630nnred 11653 . . . . . . . . . . . . . 14 (𝑘 ∈ (1...𝑙) → 𝑘 ∈ ℝ)
634633adantl 484 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (1...𝑙)) → 𝑘 ∈ ℝ)
635146adantr 483 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (1...𝑙)) → 𝑋 ∈ ℝ)
636634, 635remulcld 10671 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (1...𝑙)) → (𝑘 · 𝑋) ∈ ℝ)
637636recoscld 15497 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (1...𝑙)) → (cos‘(𝑘 · 𝑋)) ∈ ℝ)
638632, 637remulcld 10671 . . . . . . . . . 10 ((𝜑𝑘 ∈ (1...𝑙)) → ((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) ∈ ℝ)
639630, 592sylan2 594 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (1...𝑙)) → (𝐵𝑘) ∈ ℝ)
640636resincld 15496 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (1...𝑙)) → (sin‘(𝑘 · 𝑋)) ∈ ℝ)
641639, 640remulcld 10671 . . . . . . . . . 10 ((𝜑𝑘 ∈ (1...𝑙)) → ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))) ∈ ℝ)
642638, 641readdcld 10670 . . . . . . . . 9 ((𝜑𝑘 ∈ (1...𝑙)) → (((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) ∈ ℝ)
643642adantlr 713 . . . . . . . 8 (((𝜑𝑙 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑙)) → (((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) ∈ ℝ)
644629, 643fsumrecl 15091 . . . . . . 7 ((𝜑𝑙 ∈ ℕ) → Σ𝑘 ∈ (1...𝑙)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) ∈ ℝ)
645624, 627, 628, 644fvmptd 6775 . . . . . 6 ((𝜑𝑙 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))‘𝑙) = Σ𝑘 ∈ (1...𝑙)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))
646 eleq1w 2895 . . . . . . . . 9 (𝑛 = 𝑙 → (𝑛 ∈ ℕ ↔ 𝑙 ∈ ℕ))
647646anbi2d 630 . . . . . . . 8 (𝑛 = 𝑙 → ((𝜑𝑛 ∈ ℕ) ↔ (𝜑𝑙 ∈ ℕ)))
648 fveq2 6670 . . . . . . . . 9 (𝑛 = 𝑙 → (seq1( + , (𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋))))))‘𝑛) = (seq1( + , (𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋))))))‘𝑙))
649626, 648eqeq12d 2837 . . . . . . . 8 (𝑛 = 𝑙 → (Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) = (seq1( + , (𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋))))))‘𝑛) ↔ Σ𝑘 ∈ (1...𝑙)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) = (seq1( + , (𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋))))))‘𝑙)))
650647, 649imbi12d 347 . . . . . . 7 (𝑛 = 𝑙 → (((𝜑𝑛 ∈ ℕ) → Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) = (seq1( + , (𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋))))))‘𝑛)) ↔ ((𝜑𝑙 ∈ ℕ) → Σ𝑘 ∈ (1...𝑙)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) = (seq1( + , (𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋))))))‘𝑙))))
651 eqidd 2822 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋))))) = (𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋))))))
652 fveq2 6670 . . . . . . . . . . . 12 (𝑗 = 𝑘 → (𝐴𝑗) = (𝐴𝑘))
653 oveq1 7163 . . . . . . . . . . . . 13 (𝑗 = 𝑘 → (𝑗 · 𝑋) = (𝑘 · 𝑋))
654653fveq2d 6674 . . . . . . . . . . . 12 (𝑗 = 𝑘 → (cos‘(𝑗 · 𝑋)) = (cos‘(𝑘 · 𝑋)))
655652, 654oveq12d 7174 . . . . . . . . . . 11 (𝑗 = 𝑘 → ((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) = ((𝐴𝑘) · (cos‘(𝑘 · 𝑋))))
656 fveq2 6670 . . . . . . . . . . . 12 (𝑗 = 𝑘 → (𝐵𝑗) = (𝐵𝑘))
657653fveq2d 6674 . . . . . . . . . . . 12 (𝑗 = 𝑘 → (sin‘(𝑗 · 𝑋)) = (sin‘(𝑘 · 𝑋)))
658656, 657oveq12d 7174 . . . . . . . . . . 11 (𝑗 = 𝑘 → ((𝐵𝑗) · (sin‘(𝑗 · 𝑋))) = ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))
659655, 658oveq12d 7174 . . . . . . . . . 10 (𝑗 = 𝑘 → (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋)))) = (((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))
660659adantl 484 . . . . . . . . 9 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) ∧ 𝑗 = 𝑘) → (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋)))) = (((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))
661 elfznn 12937 . . . . . . . . . 10 (𝑘 ∈ (1...𝑛) → 𝑘 ∈ ℕ)
662661adantl 484 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ ℕ)
663 simpll 765 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝜑)
664 nnnn0 11905 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
665 nn0re 11907 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ0𝑘 ∈ ℝ)
666665adantl 484 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℝ)
667146adantr 483 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ0) → 𝑋 ∈ ℝ)
668666, 667remulcld 10671 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ0) → (𝑘 · 𝑋) ∈ ℝ)
669668recoscld 15497 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ0) → (cos‘(𝑘 · 𝑋)) ∈ ℝ)
670576, 669remulcld 10671 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → ((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) ∈ ℝ)
671664, 670sylan2 594 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) ∈ ℝ)
672664, 668sylan2 594 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (𝑘 · 𝑋) ∈ ℝ)
673672resincld 15496 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (sin‘(𝑘 · 𝑋)) ∈ ℝ)
674592, 673remulcld 10671 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))) ∈ ℝ)
675671, 674readdcld 10670 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) ∈ ℝ)
676663, 662, 675syl2anc 586 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) ∈ ℝ)
677651, 660, 662, 676fvmptd 6775 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → ((𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋)))))‘𝑘) = (((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))
678362, 14eleqtrdi 2923 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ (ℤ‘1))
679676recnd 10669 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) ∈ ℂ)
680677, 678, 679fsumser 15087 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) = (seq1( + , (𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋))))))‘𝑛))
681650, 680chvarvv 2005 . . . . . 6 ((𝜑𝑙 ∈ ℕ) → Σ𝑘 ∈ (1...𝑙)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) = (seq1( + , (𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋))))))‘𝑙))
682645, 681eqtrd 2856 . . . . 5 ((𝜑𝑙 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))‘𝑙) = (seq1( + , (𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋))))))‘𝑙))
68314, 558, 623, 15, 682climeq 14924 . . . 4 (𝜑 → ((𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2)) ↔ seq1( + , (𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋)))))) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2))))
684621, 683mpbid 234 . . 3 (𝜑 → seq1( + , (𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋)))))) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2)))
68513, 684eqbrtrd 5088 . 2 (𝜑 → seq1( + , 𝑆) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2)))
686 eqidd 2822 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋))))) = (𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋))))))
687 fveq2 6670 . . . . . . . . 9 (𝑗 = 𝑛 → (𝐴𝑗) = (𝐴𝑛))
688 oveq1 7163 . . . . . . . . . 10 (𝑗 = 𝑛 → (𝑗 · 𝑋) = (𝑛 · 𝑋))
689688fveq2d 6674 . . . . . . . . 9 (𝑗 = 𝑛 → (cos‘(𝑗 · 𝑋)) = (cos‘(𝑛 · 𝑋)))
690687, 689oveq12d 7174 . . . . . . . 8 (𝑗 = 𝑛 → ((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) = ((𝐴𝑛) · (cos‘(𝑛 · 𝑋))))
691 fveq2 6670 . . . . . . . . 9 (𝑗 = 𝑛 → (𝐵𝑗) = (𝐵𝑛))
692688fveq2d 6674 . . . . . . . . 9 (𝑗 = 𝑛 → (sin‘(𝑗 · 𝑋)) = (sin‘(𝑛 · 𝑋)))
693691, 692oveq12d 7174 . . . . . . . 8 (𝑗 = 𝑛 → ((𝐵𝑗) · (sin‘(𝑗 · 𝑋))) = ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))
694690, 693oveq12d 7174 . . . . . . 7 (𝑗 = 𝑛 → (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋)))) = (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))))
695694adantl 484 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑗 = 𝑛) → (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋)))) = (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))))
696686, 695, 362, 596fvmptd 6775 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝑗 ∈ ℕ ↦ (((𝐴𝑗) · (cos‘(𝑗 · 𝑋))) + ((𝐵𝑗) · (sin‘(𝑗 · 𝑋)))))‘𝑛) = (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))))
697596recnd 10669 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))) ∈ ℂ)
69814, 15, 696, 697, 684isumclim 15112 . . . 4 (𝜑 → Σ𝑛 ∈ ℕ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))) = (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2)))
699698oveq2d 7172 . . 3 (𝜑 → (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = (((𝐴‘0) / 2) + (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2))))
700503, 505addcld 10660 . . . . 5 (𝜑 → (𝐿 + 𝑅) ∈ ℂ)
701700halfcld 11883 . . . 4 (𝜑 → ((𝐿 + 𝑅) / 2) ∈ ℂ)
702556, 701pncan3d 11000 . . 3 (𝜑 → (((𝐴‘0) / 2) + (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2))) = ((𝐿 + 𝑅) / 2))
703699, 702eqtrd 2856 . 2 (𝜑 → (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝐿 + 𝑅) / 2))
704685, 703jca 514 1 (𝜑 → (seq1( + , 𝑆) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2)) ∧ (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝐿 + 𝑅) / 2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3138  wrex 3139  {crab 3142  Vcvv 3494  csb 3883  cun 3934  cin 3935  wss 3936  ifcif 4467  {cpr 4569   class class class wbr 5066  cmpt 5146  dom cdm 5555  ran crn 5556  cres 5557  cio 6312  wf 6351  cfv 6355   Isom wiso 6356  crio 7113  (class class class)co 7156  m cmap 8406  supcsup 8904  cc 10535  cr 10536  0cc0 10537  1c1 10538   + caddc 10540   · cmul 10542  +∞cpnf 10672  -∞cmnf 10673  *cxr 10674   < clt 10675  cle 10676  cmin 10870  -cneg 10871   / cdiv 11297  cn 11638  2c2 11693  0cn0 11898  cz 11982  cuz 12244  +crp 12390  (,)cioo 12739  (,]cioc 12740  [,]cicc 12742  ...cfz 12893  ..^cfzo 13034  cfl 13161   mod cmo 13238  seqcseq 13370  chash 13691  abscabs 14593  cli 14841  Σcsu 15042  sincsin 15417  cosccos 15418  πcpi 15420  cnccncf 23484  volcvol 24064  𝐿1cibl 24218  citg 24219   lim climc 24460   D cdv 24461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cc 9857  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-symdif 4219  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-disj 5032  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-ofr 7410  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-omul 8107  df-er 8289  df-map 8408  df-pm 8409  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-fi 8875  df-sup 8906  df-inf 8907  df-oi 8974  df-dju 9330  df-card 9368  df-acn 9371  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-xnn0 11969  df-z 11983  df-dec 12100  df-uz 12245  df-q 12350  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-ioo 12743  df-ioc 12744  df-ico 12745  df-icc 12746  df-fz 12894  df-fzo 13035  df-fl 13163  df-mod 13239  df-seq 13371  df-exp 13431  df-fac 13635  df-bc 13664  df-hash 13692  df-shft 14426  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-limsup 14828  df-clim 14845  df-rlim 14846  df-sum 15043  df-ef 15421  df-sin 15423  df-cos 15424  df-pi 15426  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-hom 16589  df-cco 16590  df-rest 16696  df-topn 16697  df-0g 16715  df-gsum 16716  df-topgen 16717  df-pt 16718  df-prds 16721  df-xrs 16775  df-qtop 16780  df-imas 16781  df-xps 16783  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-mulg 18225  df-cntz 18447  df-cmn 18908  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-fbas 20542  df-fg 20543  df-cnfld 20546  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-cld 21627  df-ntr 21628  df-cls 21629  df-nei 21706  df-lp 21744  df-perf 21745  df-cn 21835  df-cnp 21836  df-t1 21922  df-haus 21923  df-cmp 21995  df-tx 22170  df-hmeo 22363  df-fil 22454  df-fm 22546  df-flim 22547  df-flf 22548  df-xms 22930  df-ms 22931  df-tms 22932  df-cncf 23486  df-ovol 24065  df-vol 24066  df-mbf 24220  df-itg1 24221  df-itg2 24222  df-ibl 24223  df-itg 24224  df-0p 24271  df-ditg 24445  df-limc 24464  df-dv 24465
This theorem is referenced by:  fourierdlem113  42553
  Copyright terms: Public domain W3C validator