Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem62 Structured version   Visualization version   GIF version

Theorem stoweidlem62 38755
Description: This theorem proves the Stone Weierstrass theorem for the non-trivial case in which T is nonempty. The proof follows [BrosowskiDeutsh] p. 89 (through page 92). (Contributed by Glauco Siliprandi, 20-Apr-2017.) (Revised by AV, 13-Sep-2020.)
Hypotheses
Ref Expression
stoweidlem62.1 𝑡𝐹
stoweidlem62.2 𝑓𝜑
stoweidlem62.3 𝑡𝜑
stoweidlem62.4 𝐻 = (𝑡𝑇 ↦ ((𝐹𝑡) − inf(ran 𝐹, ℝ, < )))
stoweidlem62.5 𝐾 = (topGen‘ran (,))
stoweidlem62.6 𝑇 = 𝐽
stoweidlem62.7 (𝜑𝐽 ∈ Comp)
stoweidlem62.8 𝐶 = (𝐽 Cn 𝐾)
stoweidlem62.9 (𝜑𝐴𝐶)
stoweidlem62.10 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
stoweidlem62.11 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweidlem62.12 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
stoweidlem62.13 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
stoweidlem62.14 (𝜑𝐹𝐶)
stoweidlem62.15 (𝜑𝐸 ∈ ℝ+)
stoweidlem62.16 (𝜑𝑇 ≠ ∅)
stoweidlem62.17 (𝜑𝐸 < (1 / 3))
Assertion
Ref Expression
stoweidlem62 (𝜑 → ∃𝑓𝐴𝑡𝑇 (abs‘((𝑓𝑡) − (𝐹𝑡))) < 𝐸)
Distinct variable groups:   𝑓,𝑔,𝑡,𝐴   𝑓,𝑞,𝑟,𝑥,𝑡,𝐴   𝑓,𝐸,𝑔,𝑡   𝑓,𝐹,𝑔   𝑓,𝐻,𝑔   𝑓,𝐽,𝑟,𝑡   𝑇,𝑓,𝑔,𝑡   𝜑,𝑓,𝑔   𝐸,𝑞,𝑟,𝑥   𝐻,𝑞,𝑟,𝑥   𝑇,𝑞,𝑟,𝑥   𝜑,𝑞,𝑟,𝑥   𝑡,𝐾   𝑥,𝐹
Allowed substitution hints:   𝜑(𝑡)   𝐶(𝑥,𝑡,𝑓,𝑔,𝑟,𝑞)   𝐹(𝑡,𝑟,𝑞)   𝐻(𝑡)   𝐽(𝑥,𝑔,𝑞)   𝐾(𝑥,𝑓,𝑔,𝑟,𝑞)

Proof of Theorem stoweidlem62
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 stoweidlem62.4 . . . . 5 𝐻 = (𝑡𝑇 ↦ ((𝐹𝑡) − inf(ran 𝐹, ℝ, < )))
2 nfmpt1 4665 . . . . 5 𝑡(𝑡𝑇 ↦ ((𝐹𝑡) − inf(ran 𝐹, ℝ, < )))
31, 2nfcxfr 2744 . . . 4 𝑡𝐻
4 stoweidlem62.3 . . . 4 𝑡𝜑
5 stoweidlem62.5 . . . 4 𝐾 = (topGen‘ran (,))
6 stoweidlem62.7 . . . 4 (𝜑𝐽 ∈ Comp)
7 stoweidlem62.6 . . . 4 𝑇 = 𝐽
8 stoweidlem62.16 . . . 4 (𝜑𝑇 ≠ ∅)
9 stoweidlem62.8 . . . 4 𝐶 = (𝐽 Cn 𝐾)
10 stoweidlem62.9 . . . 4 (𝜑𝐴𝐶)
11 eleq1 2671 . . . . . . 7 (𝑔 = → (𝑔𝐴𝐴))
12113anbi3d 1396 . . . . . 6 (𝑔 = → ((𝜑𝑓𝐴𝑔𝐴) ↔ (𝜑𝑓𝐴𝐴)))
13 fveq1 6083 . . . . . . . . 9 (𝑔 = → (𝑔𝑡) = (𝑡))
1413oveq2d 6539 . . . . . . . 8 (𝑔 = → ((𝑓𝑡) + (𝑔𝑡)) = ((𝑓𝑡) + (𝑡)))
1514mpteq2dv 4663 . . . . . . 7 (𝑔 = → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) = (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑡))))
1615eleq1d 2667 . . . . . 6 (𝑔 = → ((𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴 ↔ (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑡))) ∈ 𝐴))
1712, 16imbi12d 332 . . . . 5 (𝑔 = → (((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴) ↔ ((𝜑𝑓𝐴𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑡))) ∈ 𝐴)))
18 stoweidlem62.10 . . . . 5 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
1917, 18chvarv 2245 . . . 4 ((𝜑𝑓𝐴𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑡))) ∈ 𝐴)
2013oveq2d 6539 . . . . . . . 8 (𝑔 = → ((𝑓𝑡) · (𝑔𝑡)) = ((𝑓𝑡) · (𝑡)))
2120mpteq2dv 4663 . . . . . . 7 (𝑔 = → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) = (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑡))))
2221eleq1d 2667 . . . . . 6 (𝑔 = → ((𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴 ↔ (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑡))) ∈ 𝐴))
2312, 22imbi12d 332 . . . . 5 (𝑔 = → (((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴) ↔ ((𝜑𝑓𝐴𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑡))) ∈ 𝐴)))
24 stoweidlem62.11 . . . . 5 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
2523, 24chvarv 2245 . . . 4 ((𝜑𝑓𝐴𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑡))) ∈ 𝐴)
26 stoweidlem62.12 . . . 4 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
27 stoweidlem62.13 . . . 4 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
28 stoweidlem62.1 . . . . . 6 𝑡𝐹
2928nfrn 5272 . . . . . . 7 𝑡ran 𝐹
30 nfcv 2746 . . . . . . 7 𝑡
31 nfcv 2746 . . . . . . 7 𝑡 <
3229, 30, 31nfinf 8244 . . . . . 6 𝑡inf(ran 𝐹, ℝ, < )
33 eqid 2605 . . . . . 6 (𝑇 × {-inf(ran 𝐹, ℝ, < )}) = (𝑇 × {-inf(ran 𝐹, ℝ, < )})
34 cmptop 20946 . . . . . . 7 (𝐽 ∈ Comp → 𝐽 ∈ Top)
356, 34syl 17 . . . . . 6 (𝜑𝐽 ∈ Top)
36 stoweidlem62.14 . . . . . 6 (𝜑𝐹𝐶)
3736, 9syl6eleq 2693 . . . . . . . 8 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
3828, 4, 7, 5, 6, 37, 8stoweidlem29 38722 . . . . . . 7 (𝜑 → (inf(ran 𝐹, ℝ, < ) ∈ ran 𝐹 ∧ inf(ran 𝐹, ℝ, < ) ∈ ℝ ∧ ∀𝑡𝑇 inf(ran 𝐹, ℝ, < ) ≤ (𝐹𝑡)))
3938simp2d 1066 . . . . . 6 (𝜑 → inf(ran 𝐹, ℝ, < ) ∈ ℝ)
4028, 32, 4, 7, 33, 5, 35, 9, 36, 39stoweidlem47 38740 . . . . 5 (𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡) − inf(ran 𝐹, ℝ, < ))) ∈ 𝐶)
411, 40syl5eqel 2687 . . . 4 (𝜑𝐻𝐶)
4238simp3d 1067 . . . . . . . . 9 (𝜑 → ∀𝑡𝑇 inf(ran 𝐹, ℝ, < ) ≤ (𝐹𝑡))
4342r19.21bi 2911 . . . . . . . 8 ((𝜑𝑡𝑇) → inf(ran 𝐹, ℝ, < ) ≤ (𝐹𝑡))
445, 7, 9, 36fcnre 38006 . . . . . . . . . 10 (𝜑𝐹:𝑇⟶ℝ)
4544fnvinran 37995 . . . . . . . . 9 ((𝜑𝑡𝑇) → (𝐹𝑡) ∈ ℝ)
4639adantr 479 . . . . . . . . 9 ((𝜑𝑡𝑇) → inf(ran 𝐹, ℝ, < ) ∈ ℝ)
4745, 46subge0d 10462 . . . . . . . 8 ((𝜑𝑡𝑇) → (0 ≤ ((𝐹𝑡) − inf(ran 𝐹, ℝ, < )) ↔ inf(ran 𝐹, ℝ, < ) ≤ (𝐹𝑡)))
4843, 47mpbird 245 . . . . . . 7 ((𝜑𝑡𝑇) → 0 ≤ ((𝐹𝑡) − inf(ran 𝐹, ℝ, < )))
49 simpr 475 . . . . . . . 8 ((𝜑𝑡𝑇) → 𝑡𝑇)
5045, 46resubcld 10305 . . . . . . . 8 ((𝜑𝑡𝑇) → ((𝐹𝑡) − inf(ran 𝐹, ℝ, < )) ∈ ℝ)
511fvmpt2 6181 . . . . . . . 8 ((𝑡𝑇 ∧ ((𝐹𝑡) − inf(ran 𝐹, ℝ, < )) ∈ ℝ) → (𝐻𝑡) = ((𝐹𝑡) − inf(ran 𝐹, ℝ, < )))
5249, 50, 51syl2anc 690 . . . . . . 7 ((𝜑𝑡𝑇) → (𝐻𝑡) = ((𝐹𝑡) − inf(ran 𝐹, ℝ, < )))
5348, 52breqtrrd 4601 . . . . . 6 ((𝜑𝑡𝑇) → 0 ≤ (𝐻𝑡))
5453ex 448 . . . . 5 (𝜑 → (𝑡𝑇 → 0 ≤ (𝐻𝑡)))
554, 54ralrimi 2935 . . . 4 (𝜑 → ∀𝑡𝑇 0 ≤ (𝐻𝑡))
56 stoweidlem62.15 . . . . 5 (𝜑𝐸 ∈ ℝ+)
5756rphalfcld 11712 . . . 4 (𝜑 → (𝐸 / 2) ∈ ℝ+)
5856rpred 11700 . . . . . 6 (𝜑𝐸 ∈ ℝ)
5958rehalfcld 11122 . . . . 5 (𝜑 → (𝐸 / 2) ∈ ℝ)
60 3re 10937 . . . . . . 7 3 ∈ ℝ
61 3ne0 10958 . . . . . . 7 3 ≠ 0
6260, 61rereccli 10635 . . . . . 6 (1 / 3) ∈ ℝ
6362a1i 11 . . . . 5 (𝜑 → (1 / 3) ∈ ℝ)
64 rphalflt 11688 . . . . . 6 (𝐸 ∈ ℝ+ → (𝐸 / 2) < 𝐸)
6556, 64syl 17 . . . . 5 (𝜑 → (𝐸 / 2) < 𝐸)
66 stoweidlem62.17 . . . . 5 (𝜑𝐸 < (1 / 3))
6759, 58, 63, 65, 66lttrd 10045 . . . 4 (𝜑 → (𝐸 / 2) < (1 / 3))
683, 4, 5, 6, 7, 8, 9, 10, 19, 25, 26, 27, 41, 55, 57, 67stoweidlem61 38754 . . 3 (𝜑 → ∃𝐴𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < (2 · (𝐸 / 2)))
69 nfra1 2920 . . . . . . 7 𝑡𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < (2 · (𝐸 / 2))
704, 69nfan 1814 . . . . . 6 𝑡(𝜑 ∧ ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < (2 · (𝐸 / 2)))
71 rsp 2908 . . . . . . 7 (∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < (2 · (𝐸 / 2)) → (𝑡𝑇 → (abs‘((𝑡) − (𝐻𝑡))) < (2 · (𝐸 / 2))))
7256rpcnd 11702 . . . . . . . . . 10 (𝜑𝐸 ∈ ℂ)
73 2cnd 10936 . . . . . . . . . 10 (𝜑 → 2 ∈ ℂ)
74 2ne0 10956 . . . . . . . . . . 11 2 ≠ 0
7574a1i 11 . . . . . . . . . 10 (𝜑 → 2 ≠ 0)
7672, 73, 75divcan2d 10648 . . . . . . . . 9 (𝜑 → (2 · (𝐸 / 2)) = 𝐸)
7776breq2d 4585 . . . . . . . 8 (𝜑 → ((abs‘((𝑡) − (𝐻𝑡))) < (2 · (𝐸 / 2)) ↔ (abs‘((𝑡) − (𝐻𝑡))) < 𝐸))
7877biimpd 217 . . . . . . 7 (𝜑 → ((abs‘((𝑡) − (𝐻𝑡))) < (2 · (𝐸 / 2)) → (abs‘((𝑡) − (𝐻𝑡))) < 𝐸))
7971, 78sylan9r 687 . . . . . 6 ((𝜑 ∧ ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < (2 · (𝐸 / 2))) → (𝑡𝑇 → (abs‘((𝑡) − (𝐻𝑡))) < 𝐸))
8070, 79ralrimi 2935 . . . . 5 ((𝜑 ∧ ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < (2 · (𝐸 / 2))) → ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)
8180ex 448 . . . 4 (𝜑 → (∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < (2 · (𝐸 / 2)) → ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸))
8281reximdv 2994 . . 3 (𝜑 → (∃𝐴𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < (2 · (𝐸 / 2)) → ∃𝐴𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸))
8368, 82mpd 15 . 2 (𝜑 → ∃𝐴𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)
84 nfmpt1 4665 . . 3 𝑡(𝑡𝑇 ↦ ((𝑡) + inf(ran 𝐹, ℝ, < )))
85 nfcv 2746 . . 3 𝑡
86 nfv 1828 . . . . 5 𝑡 𝐴
87 nfra1 2920 . . . . 5 𝑡𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸
8886, 87nfan 1814 . . . 4 𝑡(𝐴 ∧ ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)
894, 88nfan 1814 . . 3 𝑡(𝜑 ∧ (𝐴 ∧ ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸))
90 eqid 2605 . . 3 (𝑡𝑇 ↦ ((𝑡) + inf(ran 𝐹, ℝ, < ))) = (𝑡𝑇 ↦ ((𝑡) + inf(ran 𝐹, ℝ, < )))
9144adantr 479 . . 3 ((𝜑 ∧ (𝐴 ∧ ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)) → 𝐹:𝑇⟶ℝ)
9239adantr 479 . . 3 ((𝜑 ∧ (𝐴 ∧ ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)) → inf(ran 𝐹, ℝ, < ) ∈ ℝ)
93183adant1r 1310 . . 3 (((𝜑 ∧ (𝐴 ∧ ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
9426adantlr 746 . . 3 (((𝜑 ∧ (𝐴 ∧ ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)) ∧ 𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
95 stoweidlem62.2 . . . . 5 𝑓𝜑
9610sseld 3562 . . . . . . . 8 (𝜑 → (𝑓𝐴𝑓𝐶))
979eleq2i 2675 . . . . . . . 8 (𝑓𝐶𝑓 ∈ (𝐽 Cn 𝐾))
9896, 97syl6ib 239 . . . . . . 7 (𝜑 → (𝑓𝐴𝑓 ∈ (𝐽 Cn 𝐾)))
99 eqid 2605 . . . . . . . 8 𝐽 = 𝐽
100 uniretop 22304 . . . . . . . . 9 ℝ = (topGen‘ran (,))
1015unieqi 4371 . . . . . . . . 9 𝐾 = (topGen‘ran (,))
102100, 101eqtr4i 2630 . . . . . . . 8 ℝ = 𝐾
10399, 102cnf 20798 . . . . . . 7 (𝑓 ∈ (𝐽 Cn 𝐾) → 𝑓: 𝐽⟶ℝ)
10498, 103syl6 34 . . . . . 6 (𝜑 → (𝑓𝐴𝑓: 𝐽⟶ℝ))
105 feq2 5922 . . . . . . 7 (𝑇 = 𝐽 → (𝑓:𝑇⟶ℝ ↔ 𝑓: 𝐽⟶ℝ))
1067, 105mp1i 13 . . . . . 6 (𝜑 → (𝑓:𝑇⟶ℝ ↔ 𝑓: 𝐽⟶ℝ))
107104, 106sylibrd 247 . . . . 5 (𝜑 → (𝑓𝐴𝑓:𝑇⟶ℝ))
10895, 107ralrimi 2935 . . . 4 (𝜑 → ∀𝑓𝐴 𝑓:𝑇⟶ℝ)
109108adantr 479 . . 3 ((𝜑 ∧ (𝐴 ∧ ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)) → ∀𝑓𝐴 𝑓:𝑇⟶ℝ)
110 simprl 789 . . 3 ((𝜑 ∧ (𝐴 ∧ ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)) → 𝐴)
11152eqcomd 2611 . . . . . . . . 9 ((𝜑𝑡𝑇) → ((𝐹𝑡) − inf(ran 𝐹, ℝ, < )) = (𝐻𝑡))
112111oveq2d 6539 . . . . . . . 8 ((𝜑𝑡𝑇) → ((𝑡) − ((𝐹𝑡) − inf(ran 𝐹, ℝ, < ))) = ((𝑡) − (𝐻𝑡)))
113112fveq2d 6088 . . . . . . 7 ((𝜑𝑡𝑇) → (abs‘((𝑡) − ((𝐹𝑡) − inf(ran 𝐹, ℝ, < )))) = (abs‘((𝑡) − (𝐻𝑡))))
114113adantlr 746 . . . . . 6 (((𝜑 ∧ (𝐴 ∧ ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)) ∧ 𝑡𝑇) → (abs‘((𝑡) − ((𝐹𝑡) − inf(ran 𝐹, ℝ, < )))) = (abs‘((𝑡) − (𝐻𝑡))))
115 simplrr 796 . . . . . . 7 (((𝜑 ∧ (𝐴 ∧ ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)) ∧ 𝑡𝑇) → ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)
116 rspa 2909 . . . . . . 7 ((∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸𝑡𝑇) → (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)
117115, 116sylancom 697 . . . . . 6 (((𝜑 ∧ (𝐴 ∧ ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)) ∧ 𝑡𝑇) → (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)
118114, 117eqbrtrd 4595 . . . . 5 (((𝜑 ∧ (𝐴 ∧ ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)) ∧ 𝑡𝑇) → (abs‘((𝑡) − ((𝐹𝑡) − inf(ran 𝐹, ℝ, < )))) < 𝐸)
119118ex 448 . . . 4 ((𝜑 ∧ (𝐴 ∧ ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)) → (𝑡𝑇 → (abs‘((𝑡) − ((𝐹𝑡) − inf(ran 𝐹, ℝ, < )))) < 𝐸))
12089, 119ralrimi 2935 . . 3 ((𝜑 ∧ (𝐴 ∧ ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)) → ∀𝑡𝑇 (abs‘((𝑡) − ((𝐹𝑡) − inf(ran 𝐹, ℝ, < )))) < 𝐸)
12184, 85, 32, 89, 90, 91, 92, 93, 94, 109, 110, 120stoweidlem21 38714 . 2 ((𝜑 ∧ (𝐴 ∧ ∀𝑡𝑇 (abs‘((𝑡) − (𝐻𝑡))) < 𝐸)) → ∃𝑓𝐴𝑡𝑇 (abs‘((𝑓𝑡) − (𝐹𝑡))) < 𝐸)
12283, 121rexlimddv 3012 1 (𝜑 → ∃𝑓𝐴𝑡𝑇 (abs‘((𝑓𝑡) − (𝐹𝑡))) < 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382  w3a 1030   = wceq 1474  wnf 1698  wcel 1975  wnfc 2733  wne 2775  wral 2891  wrex 2892  wss 3535  c0 3869  {csn 4120   cuni 4362   class class class wbr 4573  cmpt 4633   × cxp 5022  ran crn 5025  wf 5782  cfv 5786  (class class class)co 6523  infcinf 8203  cr 9787  0cc0 9788  1c1 9789   + caddc 9791   · cmul 9793   < clt 9926  cle 9927  cmin 10113  -cneg 10114   / cdiv 10529  2c2 10913  3c3 10914  +crp 11660  (,)cioo 11998  abscabs 13764  topGenctg 15863  Topctop 20455   Cn ccn 20776  Compccmp 20937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2228  ax-ext 2585  ax-rep 4689  ax-sep 4699  ax-nul 4708  ax-pow 4760  ax-pr 4824  ax-un 6820  ax-inf2 8394  ax-cnex 9844  ax-resscn 9845  ax-1cn 9846  ax-icn 9847  ax-addcl 9848  ax-addrcl 9849  ax-mulcl 9850  ax-mulrcl 9851  ax-mulcom 9852  ax-addass 9853  ax-mulass 9854  ax-distr 9855  ax-i2m1 9856  ax-1ne0 9857  ax-1rid 9858  ax-rnegex 9859  ax-rrecex 9860  ax-cnre 9861  ax-pre-lttri 9862  ax-pre-lttrn 9863  ax-pre-ltadd 9864  ax-pre-mulgt0 9865  ax-pre-sup 9866  ax-addf 9867  ax-mulf 9868
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2457  df-mo 2458  df-clab 2592  df-cleq 2598  df-clel 2601  df-nfc 2735  df-ne 2777  df-nel 2778  df-ral 2896  df-rex 2897  df-reu 2898  df-rmo 2899  df-rab 2900  df-v 3170  df-sbc 3398  df-csb 3495  df-dif 3538  df-un 3540  df-in 3542  df-ss 3549  df-pss 3551  df-nul 3870  df-if 4032  df-pw 4105  df-sn 4121  df-pr 4123  df-tp 4125  df-op 4127  df-uni 4363  df-int 4401  df-iun 4447  df-iin 4448  df-br 4574  df-opab 4634  df-mpt 4635  df-tr 4671  df-eprel 4935  df-id 4939  df-po 4945  df-so 4946  df-fr 4983  df-se 4984  df-we 4985  df-xp 5030  df-rel 5031  df-cnv 5032  df-co 5033  df-dm 5034  df-rn 5035  df-res 5036  df-ima 5037  df-pred 5579  df-ord 5625  df-on 5626  df-lim 5627  df-suc 5628  df-iota 5750  df-fun 5788  df-fn 5789  df-f 5790  df-f1 5791  df-fo 5792  df-f1o 5793  df-fv 5794  df-isom 5795  df-riota 6485  df-ov 6526  df-oprab 6527  df-mpt2 6528  df-of 6768  df-om 6931  df-1st 7032  df-2nd 7033  df-supp 7156  df-wrecs 7267  df-recs 7328  df-rdg 7366  df-1o 7420  df-2o 7421  df-oadd 7424  df-er 7602  df-map 7719  df-pm 7720  df-ixp 7768  df-en 7815  df-dom 7816  df-sdom 7817  df-fin 7818  df-fsupp 8132  df-fi 8173  df-sup 8204  df-inf 8205  df-oi 8271  df-card 8621  df-cda 8846  df-pnf 9928  df-mnf 9929  df-xr 9930  df-ltxr 9931  df-le 9932  df-sub 10115  df-neg 10116  df-div 10530  df-nn 10864  df-2 10922  df-3 10923  df-4 10924  df-5 10925  df-6 10926  df-7 10927  df-8 10928  df-9 10929  df-n0 11136  df-z 11207  df-dec 11322  df-uz 11516  df-q 11617  df-rp 11661  df-xneg 11774  df-xadd 11775  df-xmul 11776  df-ioo 12002  df-ioc 12003  df-ico 12004  df-icc 12005  df-fz 12149  df-fzo 12286  df-fl 12406  df-seq 12615  df-exp 12674  df-hash 12931  df-cj 13629  df-re 13630  df-im 13631  df-sqrt 13765  df-abs 13766  df-clim 14009  df-rlim 14010  df-sum 14207  df-struct 15639  df-ndx 15640  df-slot 15641  df-base 15642  df-sets 15643  df-ress 15644  df-plusg 15723  df-mulr 15724  df-starv 15725  df-sca 15726  df-vsca 15727  df-ip 15728  df-tset 15729  df-ple 15730  df-ds 15733  df-unif 15734  df-hom 15735  df-cco 15736  df-rest 15848  df-topn 15849  df-0g 15867  df-gsum 15868  df-topgen 15869  df-pt 15870  df-prds 15873  df-xrs 15927  df-qtop 15932  df-imas 15933  df-xps 15935  df-mre 16011  df-mrc 16012  df-acs 16014  df-mgm 17007  df-sgrp 17049  df-mnd 17060  df-submnd 17101  df-mulg 17306  df-cntz 17515  df-cmn 17960  df-psmet 19501  df-xmet 19502  df-met 19503  df-bl 19504  df-mopn 19505  df-cnfld 19510  df-top 20459  df-bases 20460  df-topon 20461  df-topsp 20462  df-cld 20571  df-cn 20779  df-cnp 20780  df-cmp 20938  df-tx 21113  df-hmeo 21306  df-xms 21872  df-ms 21873  df-tms 21874
This theorem is referenced by:  stoweid  38756
  Copyright terms: Public domain W3C validator