MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmssmscld Structured version   Visualization version   GIF version

Theorem cmssmscld 23953
Description: The restriction of a metric space is closed if it is complete. (Contributed by AV, 9-Oct-2022.)
Hypotheses
Ref Expression
cmsss.h 𝐾 = (𝑀s 𝐴)
cmsss.x 𝑋 = (Base‘𝑀)
cmsss.j 𝐽 = (TopOpen‘𝑀)
Assertion
Ref Expression
cmssmscld ((𝑀 ∈ MetSp ∧ 𝐴𝑋𝐾 ∈ CMetSp) → 𝐴 ∈ (Clsd‘𝐽))

Proof of Theorem cmssmscld
StepHypRef Expression
1 cmsss.x . . . . 5 𝑋 = (Base‘𝑀)
2 eqid 2821 . . . . 5 ((dist‘𝑀) ↾ (𝑋 × 𝑋)) = ((dist‘𝑀) ↾ (𝑋 × 𝑋))
31, 2msmet 23067 . . . 4 (𝑀 ∈ MetSp → ((dist‘𝑀) ↾ (𝑋 × 𝑋)) ∈ (Met‘𝑋))
433ad2ant1 1129 . . 3 ((𝑀 ∈ MetSp ∧ 𝐴𝑋𝐾 ∈ CMetSp) → ((dist‘𝑀) ↾ (𝑋 × 𝑋)) ∈ (Met‘𝑋))
5 xpss12 5570 . . . . . . . 8 ((𝐴𝑋𝐴𝑋) → (𝐴 × 𝐴) ⊆ (𝑋 × 𝑋))
65anidms 569 . . . . . . 7 (𝐴𝑋 → (𝐴 × 𝐴) ⊆ (𝑋 × 𝑋))
763ad2ant2 1130 . . . . . 6 ((𝑀 ∈ MetSp ∧ 𝐴𝑋𝐾 ∈ CMetSp) → (𝐴 × 𝐴) ⊆ (𝑋 × 𝑋))
87resabs1d 5884 . . . . 5 ((𝑀 ∈ MetSp ∧ 𝐴𝑋𝐾 ∈ CMetSp) → (((dist‘𝑀) ↾ (𝑋 × 𝑋)) ↾ (𝐴 × 𝐴)) = ((dist‘𝑀) ↾ (𝐴 × 𝐴)))
91sseq2i 3996 . . . . . . . . 9 (𝐴𝑋𝐴 ⊆ (Base‘𝑀))
10 fvex 6683 . . . . . . . . . 10 (Base‘𝑀) ∈ V
1110ssex 5225 . . . . . . . . 9 (𝐴 ⊆ (Base‘𝑀) → 𝐴 ∈ V)
129, 11sylbi 219 . . . . . . . 8 (𝐴𝑋𝐴 ∈ V)
13123ad2ant2 1130 . . . . . . 7 ((𝑀 ∈ MetSp ∧ 𝐴𝑋𝐾 ∈ CMetSp) → 𝐴 ∈ V)
14 cmsss.h . . . . . . . 8 𝐾 = (𝑀s 𝐴)
15 eqid 2821 . . . . . . . 8 (dist‘𝑀) = (dist‘𝑀)
1614, 15ressds 16686 . . . . . . 7 (𝐴 ∈ V → (dist‘𝑀) = (dist‘𝐾))
1713, 16syl 17 . . . . . 6 ((𝑀 ∈ MetSp ∧ 𝐴𝑋𝐾 ∈ CMetSp) → (dist‘𝑀) = (dist‘𝐾))
1817reseq1d 5852 . . . . 5 ((𝑀 ∈ MetSp ∧ 𝐴𝑋𝐾 ∈ CMetSp) → ((dist‘𝑀) ↾ (𝐴 × 𝐴)) = ((dist‘𝐾) ↾ (𝐴 × 𝐴)))
198, 18eqtrd 2856 . . . 4 ((𝑀 ∈ MetSp ∧ 𝐴𝑋𝐾 ∈ CMetSp) → (((dist‘𝑀) ↾ (𝑋 × 𝑋)) ↾ (𝐴 × 𝐴)) = ((dist‘𝐾) ↾ (𝐴 × 𝐴)))
20 eqid 2821 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
21 eqid 2821 . . . . . . . 8 ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))
2220, 21iscms 23948 . . . . . . 7 (𝐾 ∈ CMetSp ↔ (𝐾 ∈ MetSp ∧ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (CMet‘(Base‘𝐾))))
2314, 1ressbas2 16555 . . . . . . . . . . . . . 14 (𝐴𝑋𝐴 = (Base‘𝐾))
2423adantr 483 . . . . . . . . . . . . 13 ((𝐴𝑋𝐾 ∈ MetSp) → 𝐴 = (Base‘𝐾))
2524eqcomd 2827 . . . . . . . . . . . 12 ((𝐴𝑋𝐾 ∈ MetSp) → (Base‘𝐾) = 𝐴)
2625sqxpeqd 5587 . . . . . . . . . . 11 ((𝐴𝑋𝐾 ∈ MetSp) → ((Base‘𝐾) × (Base‘𝐾)) = (𝐴 × 𝐴))
2726reseq2d 5853 . . . . . . . . . 10 ((𝐴𝑋𝐾 ∈ MetSp) → ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = ((dist‘𝐾) ↾ (𝐴 × 𝐴)))
2825fveq2d 6674 . . . . . . . . . 10 ((𝐴𝑋𝐾 ∈ MetSp) → (CMet‘(Base‘𝐾)) = (CMet‘𝐴))
2927, 28eleq12d 2907 . . . . . . . . 9 ((𝐴𝑋𝐾 ∈ MetSp) → (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (CMet‘(Base‘𝐾)) ↔ ((dist‘𝐾) ↾ (𝐴 × 𝐴)) ∈ (CMet‘𝐴)))
3029biimpd 231 . . . . . . . 8 ((𝐴𝑋𝐾 ∈ MetSp) → (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (CMet‘(Base‘𝐾)) → ((dist‘𝐾) ↾ (𝐴 × 𝐴)) ∈ (CMet‘𝐴)))
3130expimpd 456 . . . . . . 7 (𝐴𝑋 → ((𝐾 ∈ MetSp ∧ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (CMet‘(Base‘𝐾))) → ((dist‘𝐾) ↾ (𝐴 × 𝐴)) ∈ (CMet‘𝐴)))
3222, 31syl5bi 244 . . . . . 6 (𝐴𝑋 → (𝐾 ∈ CMetSp → ((dist‘𝐾) ↾ (𝐴 × 𝐴)) ∈ (CMet‘𝐴)))
3332imp 409 . . . . 5 ((𝐴𝑋𝐾 ∈ CMetSp) → ((dist‘𝐾) ↾ (𝐴 × 𝐴)) ∈ (CMet‘𝐴))
34333adant1 1126 . . . 4 ((𝑀 ∈ MetSp ∧ 𝐴𝑋𝐾 ∈ CMetSp) → ((dist‘𝐾) ↾ (𝐴 × 𝐴)) ∈ (CMet‘𝐴))
3519, 34eqeltrd 2913 . . 3 ((𝑀 ∈ MetSp ∧ 𝐴𝑋𝐾 ∈ CMetSp) → (((dist‘𝑀) ↾ (𝑋 × 𝑋)) ↾ (𝐴 × 𝐴)) ∈ (CMet‘𝐴))
36 eqid 2821 . . . 4 (MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋))) = (MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋)))
3736metsscmetcld 23918 . . 3 ((((dist‘𝑀) ↾ (𝑋 × 𝑋)) ∈ (Met‘𝑋) ∧ (((dist‘𝑀) ↾ (𝑋 × 𝑋)) ↾ (𝐴 × 𝐴)) ∈ (CMet‘𝐴)) → 𝐴 ∈ (Clsd‘(MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋)))))
384, 35, 37syl2anc 586 . 2 ((𝑀 ∈ MetSp ∧ 𝐴𝑋𝐾 ∈ CMetSp) → 𝐴 ∈ (Clsd‘(MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋)))))
39 cmsss.j . . . . 5 𝐽 = (TopOpen‘𝑀)
4039, 1, 2mstopn 23062 . . . 4 (𝑀 ∈ MetSp → 𝐽 = (MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋))))
41403ad2ant1 1129 . . 3 ((𝑀 ∈ MetSp ∧ 𝐴𝑋𝐾 ∈ CMetSp) → 𝐽 = (MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋))))
4241fveq2d 6674 . 2 ((𝑀 ∈ MetSp ∧ 𝐴𝑋𝐾 ∈ CMetSp) → (Clsd‘𝐽) = (Clsd‘(MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋)))))
4338, 42eleqtrrd 2916 1 ((𝑀 ∈ MetSp ∧ 𝐴𝑋𝐾 ∈ CMetSp) → 𝐴 ∈ (Clsd‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  Vcvv 3494  wss 3936   × cxp 5553  cres 5557  cfv 6355  (class class class)co 7156  Basecbs 16483  s cress 16484  distcds 16574  TopOpenctopn 16695  Metcmet 20531  MetOpencmopn 20535  Clsdccld 21624  MetSpcms 22928  CMetccmet 23857  CMetSpccms 23935
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fi 8875  df-sup 8906  df-inf 8907  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-q 12350  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-ico 12745  df-icc 12746  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-ds 16587  df-rest 16696  df-topgen 16717  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-fbas 20542  df-fg 20543  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-cld 21627  df-ntr 21628  df-cls 21629  df-nei 21706  df-haus 21923  df-fil 22454  df-flim 22547  df-xms 22930  df-ms 22931  df-cfil 23858  df-cmet 23860  df-cms 23938
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator