Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift3lem6 Structured version   Visualization version   GIF version

Theorem cvmlift3lem6 32571
Description: Lemma for cvmlift3 32575. (Contributed by Mario Carneiro, 9-Jul-2015.)
Hypotheses
Ref Expression
cvmlift3.b 𝐵 = 𝐶
cvmlift3.y 𝑌 = 𝐾
cvmlift3.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmlift3.k (𝜑𝐾 ∈ SConn)
cvmlift3.l (𝜑𝐾 ∈ 𝑛-Locally PConn)
cvmlift3.o (𝜑𝑂𝑌)
cvmlift3.g (𝜑𝐺 ∈ (𝐾 Cn 𝐽))
cvmlift3.p (𝜑𝑃𝐵)
cvmlift3.e (𝜑 → (𝐹𝑃) = (𝐺𝑂))
cvmlift3.h 𝐻 = (𝑥𝑌 ↦ (𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
cvmlift3lem7.s 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑐𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))))})
cvmlift3lem7.1 (𝜑 → (𝐺𝑋) ∈ 𝐴)
cvmlift3lem7.2 (𝜑𝑇 ∈ (𝑆𝐴))
cvmlift3lem7.3 (𝜑𝑀 ⊆ (𝐺𝐴))
cvmlift3lem7.w 𝑊 = (𝑏𝑇 (𝐻𝑋) ∈ 𝑏)
cvmlift3lem6.x (𝜑𝑋𝑀)
cvmlift3lem6.z (𝜑𝑍𝑀)
cvmlift3lem6.q (𝜑𝑄 ∈ (II Cn 𝐾))
cvmlift3lem6.r 𝑅 = (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑄) ∧ (𝑔‘0) = 𝑃))
cvmlift3lem6.1 (𝜑 → ((𝑄‘0) = 𝑂 ∧ (𝑄‘1) = 𝑋 ∧ (𝑅‘1) = (𝐻𝑋)))
cvmlift3lem6.n (𝜑𝑁 ∈ (II Cn (𝐾t 𝑀)))
cvmlift3lem6.2 (𝜑 → ((𝑁‘0) = 𝑋 ∧ (𝑁‘1) = 𝑍))
cvmlift3lem6.i 𝐼 = (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑁) ∧ (𝑔‘0) = (𝐻𝑋)))
Assertion
Ref Expression
cvmlift3lem6 (𝜑 → (𝐻𝑍) ∈ 𝑊)
Distinct variable groups:   𝑏,𝑐,𝑑,𝑓,𝑘,𝑠,𝑧,𝐴   𝑓,𝑔,𝐼,𝑧   𝑔,𝑏,𝑥,𝐽,𝑐,𝑑,𝑓,𝑘,𝑠   𝐹,𝑏,𝑐,𝑑,𝑓,𝑔,𝑘,𝑠   𝑥,𝑧,𝐹   𝑓,𝑀,𝑔,𝑥   𝑓,𝑁,𝑔   𝐻,𝑏,𝑐,𝑑,𝑓,𝑔,𝑥,𝑧   𝑄,𝑓,𝑔   𝑆,𝑏,𝑓,𝑥   𝐵,𝑏,𝑑,𝑓,𝑔,𝑥,𝑧   𝑅,𝑔   𝑋,𝑏,𝑐,𝑑,𝑓,𝑔,𝑥,𝑧   𝐺,𝑏,𝑐,𝑑,𝑓,𝑔,𝑘,𝑥,𝑧   𝑇,𝑏,𝑐,𝑑,𝑠   𝑓,𝑍,𝑔,𝑥,𝑧   𝐶,𝑏,𝑐,𝑑,𝑓,𝑔,𝑘,𝑠,𝑥,𝑧   𝜑,𝑓,𝑥   𝐾,𝑏,𝑐,𝑓,𝑔,𝑥,𝑧   𝑃,𝑏,𝑐,𝑑,𝑓,𝑔,𝑥,𝑧   𝑂,𝑏,𝑐,𝑓,𝑔,𝑥,𝑧   𝑓,𝑌,𝑔,𝑥,𝑧   𝑊,𝑐,𝑑,𝑓,𝑥
Allowed substitution hints:   𝜑(𝑧,𝑔,𝑘,𝑠,𝑏,𝑐,𝑑)   𝐴(𝑥,𝑔)   𝐵(𝑘,𝑠,𝑐)   𝑃(𝑘,𝑠)   𝑄(𝑥,𝑧,𝑘,𝑠,𝑏,𝑐,𝑑)   𝑅(𝑥,𝑧,𝑓,𝑘,𝑠,𝑏,𝑐,𝑑)   𝑆(𝑧,𝑔,𝑘,𝑠,𝑐,𝑑)   𝑇(𝑥,𝑧,𝑓,𝑔,𝑘)   𝐺(𝑠)   𝐻(𝑘,𝑠)   𝐼(𝑥,𝑘,𝑠,𝑏,𝑐,𝑑)   𝐽(𝑧)   𝐾(𝑘,𝑠,𝑑)   𝑀(𝑧,𝑘,𝑠,𝑏,𝑐,𝑑)   𝑁(𝑥,𝑧,𝑘,𝑠,𝑏,𝑐,𝑑)   𝑂(𝑘,𝑠,𝑑)   𝑊(𝑧,𝑔,𝑘,𝑠,𝑏)   𝑋(𝑘,𝑠)   𝑌(𝑘,𝑠,𝑏,𝑐,𝑑)   𝑍(𝑘,𝑠,𝑏,𝑐,𝑑)

Proof of Theorem cvmlift3lem6
StepHypRef Expression
1 cvmlift3lem6.q . . . . 5 (𝜑𝑄 ∈ (II Cn 𝐾))
2 cvmlift3.k . . . . . . . 8 (𝜑𝐾 ∈ SConn)
3 sconntop 32475 . . . . . . . 8 (𝐾 ∈ SConn → 𝐾 ∈ Top)
42, 3syl 17 . . . . . . 7 (𝜑𝐾 ∈ Top)
5 cnrest2r 21895 . . . . . . 7 (𝐾 ∈ Top → (II Cn (𝐾t 𝑀)) ⊆ (II Cn 𝐾))
64, 5syl 17 . . . . . 6 (𝜑 → (II Cn (𝐾t 𝑀)) ⊆ (II Cn 𝐾))
7 cvmlift3lem6.n . . . . . 6 (𝜑𝑁 ∈ (II Cn (𝐾t 𝑀)))
86, 7sseldd 3968 . . . . 5 (𝜑𝑁 ∈ (II Cn 𝐾))
9 cvmlift3lem6.1 . . . . . . 7 (𝜑 → ((𝑄‘0) = 𝑂 ∧ (𝑄‘1) = 𝑋 ∧ (𝑅‘1) = (𝐻𝑋)))
109simp2d 1139 . . . . . 6 (𝜑 → (𝑄‘1) = 𝑋)
11 cvmlift3lem6.2 . . . . . . 7 (𝜑 → ((𝑁‘0) = 𝑋 ∧ (𝑁‘1) = 𝑍))
1211simpld 497 . . . . . 6 (𝜑 → (𝑁‘0) = 𝑋)
1310, 12eqtr4d 2859 . . . . 5 (𝜑 → (𝑄‘1) = (𝑁‘0))
141, 8, 13pcocn 23621 . . . 4 (𝜑 → (𝑄(*𝑝𝐾)𝑁) ∈ (II Cn 𝐾))
151, 8pco0 23618 . . . . 5 (𝜑 → ((𝑄(*𝑝𝐾)𝑁)‘0) = (𝑄‘0))
169simp1d 1138 . . . . 5 (𝜑 → (𝑄‘0) = 𝑂)
1715, 16eqtrd 2856 . . . 4 (𝜑 → ((𝑄(*𝑝𝐾)𝑁)‘0) = 𝑂)
181, 8pco1 23619 . . . . 5 (𝜑 → ((𝑄(*𝑝𝐾)𝑁)‘1) = (𝑁‘1))
1911simprd 498 . . . . 5 (𝜑 → (𝑁‘1) = 𝑍)
2018, 19eqtrd 2856 . . . 4 (𝜑 → ((𝑄(*𝑝𝐾)𝑁)‘1) = 𝑍)
21 cvmlift3.b . . . . . . . . . . 11 𝐵 = 𝐶
22 cvmlift3lem6.r . . . . . . . . . . 11 𝑅 = (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑄) ∧ (𝑔‘0) = 𝑃))
23 cvmlift3.f . . . . . . . . . . 11 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
24 cvmlift3.g . . . . . . . . . . . 12 (𝜑𝐺 ∈ (𝐾 Cn 𝐽))
25 cnco 21874 . . . . . . . . . . . 12 ((𝑄 ∈ (II Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐽)) → (𝐺𝑄) ∈ (II Cn 𝐽))
261, 24, 25syl2anc 586 . . . . . . . . . . 11 (𝜑 → (𝐺𝑄) ∈ (II Cn 𝐽))
27 cvmlift3.p . . . . . . . . . . 11 (𝜑𝑃𝐵)
2816fveq2d 6674 . . . . . . . . . . . 12 (𝜑 → (𝐺‘(𝑄‘0)) = (𝐺𝑂))
29 iiuni 23489 . . . . . . . . . . . . . . 15 (0[,]1) = II
30 cvmlift3.y . . . . . . . . . . . . . . 15 𝑌 = 𝐾
3129, 30cnf 21854 . . . . . . . . . . . . . 14 (𝑄 ∈ (II Cn 𝐾) → 𝑄:(0[,]1)⟶𝑌)
321, 31syl 17 . . . . . . . . . . . . 13 (𝜑𝑄:(0[,]1)⟶𝑌)
33 0elunit 12856 . . . . . . . . . . . . 13 0 ∈ (0[,]1)
34 fvco3 6760 . . . . . . . . . . . . 13 ((𝑄:(0[,]1)⟶𝑌 ∧ 0 ∈ (0[,]1)) → ((𝐺𝑄)‘0) = (𝐺‘(𝑄‘0)))
3532, 33, 34sylancl 588 . . . . . . . . . . . 12 (𝜑 → ((𝐺𝑄)‘0) = (𝐺‘(𝑄‘0)))
36 cvmlift3.e . . . . . . . . . . . 12 (𝜑 → (𝐹𝑃) = (𝐺𝑂))
3728, 35, 363eqtr4rd 2867 . . . . . . . . . . 11 (𝜑 → (𝐹𝑃) = ((𝐺𝑄)‘0))
3821, 22, 23, 26, 27, 37cvmliftiota 32548 . . . . . . . . . 10 (𝜑 → (𝑅 ∈ (II Cn 𝐶) ∧ (𝐹𝑅) = (𝐺𝑄) ∧ (𝑅‘0) = 𝑃))
3938simp2d 1139 . . . . . . . . 9 (𝜑 → (𝐹𝑅) = (𝐺𝑄))
40 cvmlift3lem6.i . . . . . . . . . . 11 𝐼 = (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑁) ∧ (𝑔‘0) = (𝐻𝑋)))
41 cnco 21874 . . . . . . . . . . . 12 ((𝑁 ∈ (II Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐽)) → (𝐺𝑁) ∈ (II Cn 𝐽))
428, 24, 41syl2anc 586 . . . . . . . . . . 11 (𝜑 → (𝐺𝑁) ∈ (II Cn 𝐽))
43 cvmlift3.l . . . . . . . . . . . . 13 (𝜑𝐾 ∈ 𝑛-Locally PConn)
44 cvmlift3.o . . . . . . . . . . . . 13 (𝜑𝑂𝑌)
45 cvmlift3.h . . . . . . . . . . . . 13 𝐻 = (𝑥𝑌 ↦ (𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
4621, 30, 23, 2, 43, 44, 24, 27, 36, 45cvmlift3lem3 32568 . . . . . . . . . . . 12 (𝜑𝐻:𝑌𝐵)
47 cvmlift3lem7.3 . . . . . . . . . . . . . 14 (𝜑𝑀 ⊆ (𝐺𝐴))
48 cnvimass 5949 . . . . . . . . . . . . . . 15 (𝐺𝐴) ⊆ dom 𝐺
49 eqid 2821 . . . . . . . . . . . . . . . . 17 𝐽 = 𝐽
5030, 49cnf 21854 . . . . . . . . . . . . . . . 16 (𝐺 ∈ (𝐾 Cn 𝐽) → 𝐺:𝑌 𝐽)
5124, 50syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐺:𝑌 𝐽)
5248, 51fssdm 6530 . . . . . . . . . . . . . 14 (𝜑 → (𝐺𝐴) ⊆ 𝑌)
5347, 52sstrd 3977 . . . . . . . . . . . . 13 (𝜑𝑀𝑌)
54 cvmlift3lem6.x . . . . . . . . . . . . 13 (𝜑𝑋𝑀)
5553, 54sseldd 3968 . . . . . . . . . . . 12 (𝜑𝑋𝑌)
5646, 55ffvelrnd 6852 . . . . . . . . . . 11 (𝜑 → (𝐻𝑋) ∈ 𝐵)
5712fveq2d 6674 . . . . . . . . . . . 12 (𝜑 → (𝐺‘(𝑁‘0)) = (𝐺𝑋))
5829, 30cnf 21854 . . . . . . . . . . . . . 14 (𝑁 ∈ (II Cn 𝐾) → 𝑁:(0[,]1)⟶𝑌)
598, 58syl 17 . . . . . . . . . . . . 13 (𝜑𝑁:(0[,]1)⟶𝑌)
60 fvco3 6760 . . . . . . . . . . . . 13 ((𝑁:(0[,]1)⟶𝑌 ∧ 0 ∈ (0[,]1)) → ((𝐺𝑁)‘0) = (𝐺‘(𝑁‘0)))
6159, 33, 60sylancl 588 . . . . . . . . . . . 12 (𝜑 → ((𝐺𝑁)‘0) = (𝐺‘(𝑁‘0)))
62 fvco3 6760 . . . . . . . . . . . . . 14 ((𝐻:𝑌𝐵𝑋𝑌) → ((𝐹𝐻)‘𝑋) = (𝐹‘(𝐻𝑋)))
6346, 55, 62syl2anc 586 . . . . . . . . . . . . 13 (𝜑 → ((𝐹𝐻)‘𝑋) = (𝐹‘(𝐻𝑋)))
6421, 30, 23, 2, 43, 44, 24, 27, 36, 45cvmlift3lem5 32570 . . . . . . . . . . . . . 14 (𝜑 → (𝐹𝐻) = 𝐺)
6564fveq1d 6672 . . . . . . . . . . . . 13 (𝜑 → ((𝐹𝐻)‘𝑋) = (𝐺𝑋))
6663, 65eqtr3d 2858 . . . . . . . . . . . 12 (𝜑 → (𝐹‘(𝐻𝑋)) = (𝐺𝑋))
6757, 61, 663eqtr4rd 2867 . . . . . . . . . . 11 (𝜑 → (𝐹‘(𝐻𝑋)) = ((𝐺𝑁)‘0))
6821, 40, 23, 42, 56, 67cvmliftiota 32548 . . . . . . . . . 10 (𝜑 → (𝐼 ∈ (II Cn 𝐶) ∧ (𝐹𝐼) = (𝐺𝑁) ∧ (𝐼‘0) = (𝐻𝑋)))
6968simp2d 1139 . . . . . . . . 9 (𝜑 → (𝐹𝐼) = (𝐺𝑁))
7039, 69oveq12d 7174 . . . . . . . 8 (𝜑 → ((𝐹𝑅)(*𝑝𝐽)(𝐹𝐼)) = ((𝐺𝑄)(*𝑝𝐽)(𝐺𝑁)))
7138simp1d 1138 . . . . . . . . 9 (𝜑𝑅 ∈ (II Cn 𝐶))
7268simp1d 1138 . . . . . . . . 9 (𝜑𝐼 ∈ (II Cn 𝐶))
739simp3d 1140 . . . . . . . . . 10 (𝜑 → (𝑅‘1) = (𝐻𝑋))
7468simp3d 1140 . . . . . . . . . 10 (𝜑 → (𝐼‘0) = (𝐻𝑋))
7573, 74eqtr4d 2859 . . . . . . . . 9 (𝜑 → (𝑅‘1) = (𝐼‘0))
76 cvmcn 32509 . . . . . . . . . 10 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹 ∈ (𝐶 Cn 𝐽))
7723, 76syl 17 . . . . . . . . 9 (𝜑𝐹 ∈ (𝐶 Cn 𝐽))
7871, 72, 75, 77copco 23622 . . . . . . . 8 (𝜑 → (𝐹 ∘ (𝑅(*𝑝𝐶)𝐼)) = ((𝐹𝑅)(*𝑝𝐽)(𝐹𝐼)))
791, 8, 13, 24copco 23622 . . . . . . . 8 (𝜑 → (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)) = ((𝐺𝑄)(*𝑝𝐽)(𝐺𝑁)))
8070, 78, 793eqtr4d 2866 . . . . . . 7 (𝜑 → (𝐹 ∘ (𝑅(*𝑝𝐶)𝐼)) = (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)))
8171, 72pco0 23618 . . . . . . . 8 (𝜑 → ((𝑅(*𝑝𝐶)𝐼)‘0) = (𝑅‘0))
8238simp3d 1140 . . . . . . . 8 (𝜑 → (𝑅‘0) = 𝑃)
8381, 82eqtrd 2856 . . . . . . 7 (𝜑 → ((𝑅(*𝑝𝐶)𝐼)‘0) = 𝑃)
8471, 72, 75pcocn 23621 . . . . . . . 8 (𝜑 → (𝑅(*𝑝𝐶)𝐼) ∈ (II Cn 𝐶))
85 cnco 21874 . . . . . . . . . 10 (((𝑄(*𝑝𝐾)𝑁) ∈ (II Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐽)) → (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)) ∈ (II Cn 𝐽))
8614, 24, 85syl2anc 586 . . . . . . . . 9 (𝜑 → (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)) ∈ (II Cn 𝐽))
8717fveq2d 6674 . . . . . . . . . 10 (𝜑 → (𝐺‘((𝑄(*𝑝𝐾)𝑁)‘0)) = (𝐺𝑂))
8829, 30cnf 21854 . . . . . . . . . . . 12 ((𝑄(*𝑝𝐾)𝑁) ∈ (II Cn 𝐾) → (𝑄(*𝑝𝐾)𝑁):(0[,]1)⟶𝑌)
8914, 88syl 17 . . . . . . . . . . 11 (𝜑 → (𝑄(*𝑝𝐾)𝑁):(0[,]1)⟶𝑌)
90 fvco3 6760 . . . . . . . . . . 11 (((𝑄(*𝑝𝐾)𝑁):(0[,]1)⟶𝑌 ∧ 0 ∈ (0[,]1)) → ((𝐺 ∘ (𝑄(*𝑝𝐾)𝑁))‘0) = (𝐺‘((𝑄(*𝑝𝐾)𝑁)‘0)))
9189, 33, 90sylancl 588 . . . . . . . . . 10 (𝜑 → ((𝐺 ∘ (𝑄(*𝑝𝐾)𝑁))‘0) = (𝐺‘((𝑄(*𝑝𝐾)𝑁)‘0)))
9287, 91, 363eqtr4rd 2867 . . . . . . . . 9 (𝜑 → (𝐹𝑃) = ((𝐺 ∘ (𝑄(*𝑝𝐾)𝑁))‘0))
9321cvmlift 32546 . . . . . . . . 9 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)) ∈ (II Cn 𝐽)) ∧ (𝑃𝐵 ∧ (𝐹𝑃) = ((𝐺 ∘ (𝑄(*𝑝𝐾)𝑁))‘0))) → ∃!𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)) ∧ (𝑔‘0) = 𝑃))
9423, 86, 27, 92, 93syl22anc 836 . . . . . . . 8 (𝜑 → ∃!𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)) ∧ (𝑔‘0) = 𝑃))
95 coeq2 5729 . . . . . . . . . . 11 (𝑔 = (𝑅(*𝑝𝐶)𝐼) → (𝐹𝑔) = (𝐹 ∘ (𝑅(*𝑝𝐶)𝐼)))
9695eqeq1d 2823 . . . . . . . . . 10 (𝑔 = (𝑅(*𝑝𝐶)𝐼) → ((𝐹𝑔) = (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)) ↔ (𝐹 ∘ (𝑅(*𝑝𝐶)𝐼)) = (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁))))
97 fveq1 6669 . . . . . . . . . . 11 (𝑔 = (𝑅(*𝑝𝐶)𝐼) → (𝑔‘0) = ((𝑅(*𝑝𝐶)𝐼)‘0))
9897eqeq1d 2823 . . . . . . . . . 10 (𝑔 = (𝑅(*𝑝𝐶)𝐼) → ((𝑔‘0) = 𝑃 ↔ ((𝑅(*𝑝𝐶)𝐼)‘0) = 𝑃))
9996, 98anbi12d 632 . . . . . . . . 9 (𝑔 = (𝑅(*𝑝𝐶)𝐼) → (((𝐹𝑔) = (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)) ∧ (𝑔‘0) = 𝑃) ↔ ((𝐹 ∘ (𝑅(*𝑝𝐶)𝐼)) = (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)) ∧ ((𝑅(*𝑝𝐶)𝐼)‘0) = 𝑃)))
10099riota2 7139 . . . . . . . 8 (((𝑅(*𝑝𝐶)𝐼) ∈ (II Cn 𝐶) ∧ ∃!𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)) ∧ (𝑔‘0) = 𝑃)) → (((𝐹 ∘ (𝑅(*𝑝𝐶)𝐼)) = (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)) ∧ ((𝑅(*𝑝𝐶)𝐼)‘0) = 𝑃) ↔ (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)) ∧ (𝑔‘0) = 𝑃)) = (𝑅(*𝑝𝐶)𝐼)))
10184, 94, 100syl2anc 586 . . . . . . 7 (𝜑 → (((𝐹 ∘ (𝑅(*𝑝𝐶)𝐼)) = (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)) ∧ ((𝑅(*𝑝𝐶)𝐼)‘0) = 𝑃) ↔ (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)) ∧ (𝑔‘0) = 𝑃)) = (𝑅(*𝑝𝐶)𝐼)))
10280, 83, 101mpbi2and 710 . . . . . 6 (𝜑 → (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)) ∧ (𝑔‘0) = 𝑃)) = (𝑅(*𝑝𝐶)𝐼))
103102fveq1d 6672 . . . . 5 (𝜑 → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑅(*𝑝𝐶)𝐼)‘1))
10471, 72pco1 23619 . . . . 5 (𝜑 → ((𝑅(*𝑝𝐶)𝐼)‘1) = (𝐼‘1))
105103, 104eqtrd 2856 . . . 4 (𝜑 → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐼‘1))
106 fveq1 6669 . . . . . . 7 (𝑓 = (𝑄(*𝑝𝐾)𝑁) → (𝑓‘0) = ((𝑄(*𝑝𝐾)𝑁)‘0))
107106eqeq1d 2823 . . . . . 6 (𝑓 = (𝑄(*𝑝𝐾)𝑁) → ((𝑓‘0) = 𝑂 ↔ ((𝑄(*𝑝𝐾)𝑁)‘0) = 𝑂))
108 fveq1 6669 . . . . . . 7 (𝑓 = (𝑄(*𝑝𝐾)𝑁) → (𝑓‘1) = ((𝑄(*𝑝𝐾)𝑁)‘1))
109108eqeq1d 2823 . . . . . 6 (𝑓 = (𝑄(*𝑝𝐾)𝑁) → ((𝑓‘1) = 𝑍 ↔ ((𝑄(*𝑝𝐾)𝑁)‘1) = 𝑍))
110 coeq2 5729 . . . . . . . . . . 11 (𝑓 = (𝑄(*𝑝𝐾)𝑁) → (𝐺𝑓) = (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)))
111110eqeq2d 2832 . . . . . . . . . 10 (𝑓 = (𝑄(*𝑝𝐾)𝑁) → ((𝐹𝑔) = (𝐺𝑓) ↔ (𝐹𝑔) = (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁))))
112111anbi1d 631 . . . . . . . . 9 (𝑓 = (𝑄(*𝑝𝐾)𝑁) → (((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃) ↔ ((𝐹𝑔) = (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)) ∧ (𝑔‘0) = 𝑃)))
113112riotabidv 7116 . . . . . . . 8 (𝑓 = (𝑄(*𝑝𝐾)𝑁) → (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)) = (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)) ∧ (𝑔‘0) = 𝑃)))
114113fveq1d 6672 . . . . . . 7 (𝑓 = (𝑄(*𝑝𝐾)𝑁) → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)) ∧ (𝑔‘0) = 𝑃))‘1))
115114eqeq1d 2823 . . . . . 6 (𝑓 = (𝑄(*𝑝𝐾)𝑁) → (((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐼‘1) ↔ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐼‘1)))
116107, 109, 1153anbi123d 1432 . . . . 5 (𝑓 = (𝑄(*𝑝𝐾)𝑁) → (((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑍 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐼‘1)) ↔ (((𝑄(*𝑝𝐾)𝑁)‘0) = 𝑂 ∧ ((𝑄(*𝑝𝐾)𝑁)‘1) = 𝑍 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐼‘1))))
117116rspcev 3623 . . . 4 (((𝑄(*𝑝𝐾)𝑁) ∈ (II Cn 𝐾) ∧ (((𝑄(*𝑝𝐾)𝑁)‘0) = 𝑂 ∧ ((𝑄(*𝑝𝐾)𝑁)‘1) = 𝑍 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐼‘1))) → ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑍 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐼‘1)))
11814, 17, 20, 105, 117syl13anc 1368 . . 3 (𝜑 → ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑍 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐼‘1)))
119 cvmlift3lem6.z . . . . 5 (𝜑𝑍𝑀)
12053, 119sseldd 3968 . . . 4 (𝜑𝑍𝑌)
12121, 30, 23, 2, 43, 44, 24, 27, 36, 45cvmlift3lem4 32569 . . . 4 ((𝜑𝑍𝑌) → ((𝐻𝑍) = (𝐼‘1) ↔ ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑍 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐼‘1))))
122120, 121mpdan 685 . . 3 (𝜑 → ((𝐻𝑍) = (𝐼‘1) ↔ ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑍 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐼‘1))))
123118, 122mpbird 259 . 2 (𝜑 → (𝐻𝑍) = (𝐼‘1))
124 iiconn 23495 . . . . 5 II ∈ Conn
125124a1i 11 . . . 4 (𝜑 → II ∈ Conn)
126 cvmtop1 32507 . . . . . . . 8 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐶 ∈ Top)
12723, 126syl 17 . . . . . . 7 (𝜑𝐶 ∈ Top)
12821toptopon 21525 . . . . . . 7 (𝐶 ∈ Top ↔ 𝐶 ∈ (TopOn‘𝐵))
129127, 128sylib 220 . . . . . 6 (𝜑𝐶 ∈ (TopOn‘𝐵))
13069rneqd 5808 . . . . . . . . 9 (𝜑 → ran (𝐹𝐼) = ran (𝐺𝑁))
131 rnco2 6106 . . . . . . . . 9 ran (𝐹𝐼) = (𝐹 “ ran 𝐼)
132 rnco2 6106 . . . . . . . . 9 ran (𝐺𝑁) = (𝐺 “ ran 𝑁)
133130, 131, 1323eqtr3g 2879 . . . . . . . 8 (𝜑 → (𝐹 “ ran 𝐼) = (𝐺 “ ran 𝑁))
134 iitopon 23487 . . . . . . . . . . . . 13 II ∈ (TopOn‘(0[,]1))
135134a1i 11 . . . . . . . . . . . 12 (𝜑 → II ∈ (TopOn‘(0[,]1)))
13630toptopon 21525 . . . . . . . . . . . . . 14 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘𝑌))
1374, 136sylib 220 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ (TopOn‘𝑌))
138 resttopon 21769 . . . . . . . . . . . . 13 ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝑀𝑌) → (𝐾t 𝑀) ∈ (TopOn‘𝑀))
139137, 53, 138syl2anc 586 . . . . . . . . . . . 12 (𝜑 → (𝐾t 𝑀) ∈ (TopOn‘𝑀))
140 cnf2 21857 . . . . . . . . . . . 12 ((II ∈ (TopOn‘(0[,]1)) ∧ (𝐾t 𝑀) ∈ (TopOn‘𝑀) ∧ 𝑁 ∈ (II Cn (𝐾t 𝑀))) → 𝑁:(0[,]1)⟶𝑀)
141135, 139, 7, 140syl3anc 1367 . . . . . . . . . . 11 (𝜑𝑁:(0[,]1)⟶𝑀)
142141frnd 6521 . . . . . . . . . 10 (𝜑 → ran 𝑁𝑀)
143142, 47sstrd 3977 . . . . . . . . 9 (𝜑 → ran 𝑁 ⊆ (𝐺𝐴))
14451ffund 6518 . . . . . . . . . 10 (𝜑 → Fun 𝐺)
145143, 48sstrdi 3979 . . . . . . . . . 10 (𝜑 → ran 𝑁 ⊆ dom 𝐺)
146 funimass3 6824 . . . . . . . . . 10 ((Fun 𝐺 ∧ ran 𝑁 ⊆ dom 𝐺) → ((𝐺 “ ran 𝑁) ⊆ 𝐴 ↔ ran 𝑁 ⊆ (𝐺𝐴)))
147144, 145, 146syl2anc 586 . . . . . . . . 9 (𝜑 → ((𝐺 “ ran 𝑁) ⊆ 𝐴 ↔ ran 𝑁 ⊆ (𝐺𝐴)))
148143, 147mpbird 259 . . . . . . . 8 (𝜑 → (𝐺 “ ran 𝑁) ⊆ 𝐴)
149133, 148eqsstrd 4005 . . . . . . 7 (𝜑 → (𝐹 “ ran 𝐼) ⊆ 𝐴)
15021, 49cnf 21854 . . . . . . . . . 10 (𝐹 ∈ (𝐶 Cn 𝐽) → 𝐹:𝐵 𝐽)
15177, 150syl 17 . . . . . . . . 9 (𝜑𝐹:𝐵 𝐽)
152151ffund 6518 . . . . . . . 8 (𝜑 → Fun 𝐹)
15329, 21cnf 21854 . . . . . . . . . . 11 (𝐼 ∈ (II Cn 𝐶) → 𝐼:(0[,]1)⟶𝐵)
15472, 153syl 17 . . . . . . . . . 10 (𝜑𝐼:(0[,]1)⟶𝐵)
155154frnd 6521 . . . . . . . . 9 (𝜑 → ran 𝐼𝐵)
156151fdmd 6523 . . . . . . . . 9 (𝜑 → dom 𝐹 = 𝐵)
157155, 156sseqtrrd 4008 . . . . . . . 8 (𝜑 → ran 𝐼 ⊆ dom 𝐹)
158 funimass3 6824 . . . . . . . 8 ((Fun 𝐹 ∧ ran 𝐼 ⊆ dom 𝐹) → ((𝐹 “ ran 𝐼) ⊆ 𝐴 ↔ ran 𝐼 ⊆ (𝐹𝐴)))
159152, 157, 158syl2anc 586 . . . . . . 7 (𝜑 → ((𝐹 “ ran 𝐼) ⊆ 𝐴 ↔ ran 𝐼 ⊆ (𝐹𝐴)))
160149, 159mpbid 234 . . . . . 6 (𝜑 → ran 𝐼 ⊆ (𝐹𝐴))
161 cnvimass 5949 . . . . . . 7 (𝐹𝐴) ⊆ dom 𝐹
162161, 151fssdm 6530 . . . . . 6 (𝜑 → (𝐹𝐴) ⊆ 𝐵)
163 cnrest2 21894 . . . . . 6 ((𝐶 ∈ (TopOn‘𝐵) ∧ ran 𝐼 ⊆ (𝐹𝐴) ∧ (𝐹𝐴) ⊆ 𝐵) → (𝐼 ∈ (II Cn 𝐶) ↔ 𝐼 ∈ (II Cn (𝐶t (𝐹𝐴)))))
164129, 160, 162, 163syl3anc 1367 . . . . 5 (𝜑 → (𝐼 ∈ (II Cn 𝐶) ↔ 𝐼 ∈ (II Cn (𝐶t (𝐹𝐴)))))
16572, 164mpbid 234 . . . 4 (𝜑𝐼 ∈ (II Cn (𝐶t (𝐹𝐴))))
166 cvmlift3lem7.2 . . . . . . 7 (𝜑𝑇 ∈ (𝑆𝐴))
167 cvmlift3lem7.s . . . . . . . 8 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑐𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))))})
168167cvmsss 32514 . . . . . . 7 (𝑇 ∈ (𝑆𝐴) → 𝑇𝐶)
169166, 168syl 17 . . . . . 6 (𝜑𝑇𝐶)
170 cvmlift3lem7.1 . . . . . . . . 9 (𝜑 → (𝐺𝑋) ∈ 𝐴)
17166, 170eqeltrd 2913 . . . . . . . 8 (𝜑 → (𝐹‘(𝐻𝑋)) ∈ 𝐴)
172 cvmlift3lem7.w . . . . . . . . 9 𝑊 = (𝑏𝑇 (𝐻𝑋) ∈ 𝑏)
173167, 21, 172cvmsiota 32524 . . . . . . . 8 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆𝐴) ∧ (𝐻𝑋) ∈ 𝐵 ∧ (𝐹‘(𝐻𝑋)) ∈ 𝐴)) → (𝑊𝑇 ∧ (𝐻𝑋) ∈ 𝑊))
17423, 166, 56, 171, 173syl13anc 1368 . . . . . . 7 (𝜑 → (𝑊𝑇 ∧ (𝐻𝑋) ∈ 𝑊))
175174simpld 497 . . . . . 6 (𝜑𝑊𝑇)
176169, 175sseldd 3968 . . . . 5 (𝜑𝑊𝐶)
177 elssuni 4868 . . . . . . 7 (𝑊𝑇𝑊 𝑇)
178175, 177syl 17 . . . . . 6 (𝜑𝑊 𝑇)
179167cvmsuni 32516 . . . . . . 7 (𝑇 ∈ (𝑆𝐴) → 𝑇 = (𝐹𝐴))
180166, 179syl 17 . . . . . 6 (𝜑 𝑇 = (𝐹𝐴))
181178, 180sseqtrd 4007 . . . . 5 (𝜑𝑊 ⊆ (𝐹𝐴))
182167cvmsrcl 32511 . . . . . . . 8 (𝑇 ∈ (𝑆𝐴) → 𝐴𝐽)
183166, 182syl 17 . . . . . . 7 (𝜑𝐴𝐽)
184 cnima 21873 . . . . . . 7 ((𝐹 ∈ (𝐶 Cn 𝐽) ∧ 𝐴𝐽) → (𝐹𝐴) ∈ 𝐶)
18577, 183, 184syl2anc 586 . . . . . 6 (𝜑 → (𝐹𝐴) ∈ 𝐶)
186 restopn2 21785 . . . . . 6 ((𝐶 ∈ Top ∧ (𝐹𝐴) ∈ 𝐶) → (𝑊 ∈ (𝐶t (𝐹𝐴)) ↔ (𝑊𝐶𝑊 ⊆ (𝐹𝐴))))
187127, 185, 186syl2anc 586 . . . . 5 (𝜑 → (𝑊 ∈ (𝐶t (𝐹𝐴)) ↔ (𝑊𝐶𝑊 ⊆ (𝐹𝐴))))
188176, 181, 187mpbir2and 711 . . . 4 (𝜑𝑊 ∈ (𝐶t (𝐹𝐴)))
189167cvmscld 32520 . . . . 5 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝐴) ∧ 𝑊𝑇) → 𝑊 ∈ (Clsd‘(𝐶t (𝐹𝐴))))
19023, 166, 175, 189syl3anc 1367 . . . 4 (𝜑𝑊 ∈ (Clsd‘(𝐶t (𝐹𝐴))))
19133a1i 11 . . . 4 (𝜑 → 0 ∈ (0[,]1))
192174simprd 498 . . . . 5 (𝜑 → (𝐻𝑋) ∈ 𝑊)
19374, 192eqeltrd 2913 . . . 4 (𝜑 → (𝐼‘0) ∈ 𝑊)
19429, 125, 165, 188, 190, 191, 193conncn 22034 . . 3 (𝜑𝐼:(0[,]1)⟶𝑊)
195 1elunit 12857 . . 3 1 ∈ (0[,]1)
196 ffvelrn 6849 . . 3 ((𝐼:(0[,]1)⟶𝑊 ∧ 1 ∈ (0[,]1)) → (𝐼‘1) ∈ 𝑊)
197194, 195, 196sylancl 588 . 2 (𝜑 → (𝐼‘1) ∈ 𝑊)
198123, 197eqeltrd 2913 1 (𝜑 → (𝐻𝑍) ∈ 𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3138  wrex 3139  ∃!wreu 3140  {crab 3142  cdif 3933  cin 3935  wss 3936  c0 4291  𝒫 cpw 4539  {csn 4567   cuni 4838  cmpt 5146  ccnv 5554  dom cdm 5555  ran crn 5556  cres 5557  cima 5558  ccom 5559  Fun wfun 6349  wf 6351  cfv 6355  crio 7113  (class class class)co 7156  0cc0 10537  1c1 10538  [,]cicc 12742  t crest 16694  Topctop 21501  TopOnctopon 21518  Clsdccld 21624   Cn ccn 21832  Conncconn 22019  𝑛-Locally cnlly 22073  Homeochmeo 22361  IIcii 23483  *𝑝cpco 23604  PConncpconn 32466  SConncsconn 32467   CovMap ccvm 32502
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-ec 8291  df-map 8408  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-fi 8875  df-sup 8906  df-inf 8907  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-q 12350  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-ioo 12743  df-ico 12745  df-icc 12746  df-fz 12894  df-fzo 13035  df-fl 13163  df-seq 13371  df-exp 13431  df-hash 13692  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845  df-sum 15043  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-hom 16589  df-cco 16590  df-rest 16696  df-topn 16697  df-0g 16715  df-gsum 16716  df-topgen 16717  df-pt 16718  df-prds 16721  df-xrs 16775  df-qtop 16780  df-imas 16781  df-xps 16783  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-mulg 18225  df-cntz 18447  df-cmn 18908  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-cnfld 20546  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-cld 21627  df-ntr 21628  df-cls 21629  df-nei 21706  df-cn 21835  df-cnp 21836  df-cmp 21995  df-conn 22020  df-lly 22074  df-nlly 22075  df-tx 22170  df-hmeo 22363  df-xms 22930  df-ms 22931  df-tms 22932  df-ii 23485  df-htpy 23574  df-phtpy 23575  df-phtpc 23596  df-pco 23609  df-pconn 32468  df-sconn 32469  df-cvm 32503
This theorem is referenced by:  cvmlift3lem7  32572
  Copyright terms: Public domain W3C validator