Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diaf1oN Structured version   Visualization version   GIF version

Theorem diaf1oN 38281
Description: The partial isomorphism A for a lattice 𝐾 is a one-to-one, onto function. Part of Lemma M of [Crawley] p. 121 line 12, with closed subspaces rather than subspaces. See diadm 38186 for the domain. (Contributed by NM, 17-Jan-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dvadia.h 𝐻 = (LHyp‘𝐾)
dvadia.u 𝑈 = ((DVecA‘𝐾)‘𝑊)
dvadia.i 𝐼 = ((DIsoA‘𝐾)‘𝑊)
dvadia.n = ((ocA‘𝐾)‘𝑊)
dvadia.s 𝑆 = (LSubSp‘𝑈)
Assertion
Ref Expression
diaf1oN ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐼:dom 𝐼1-1-onto→{𝑥𝑆 ∣ ( ‘( 𝑥)) = 𝑥})
Distinct variable groups:   𝑥,𝐻   𝑥,𝐼   𝑥,𝐾   𝑥,𝑆   𝑥,𝑊
Allowed substitution hints:   𝑈(𝑥)   (𝑥)

Proof of Theorem diaf1oN
StepHypRef Expression
1 dvadia.h . . . . 5 𝐻 = (LHyp‘𝐾)
2 dvadia.i . . . . 5 𝐼 = ((DIsoA‘𝐾)‘𝑊)
31, 2diaf11N 38200 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐼:dom 𝐼1-1-onto→ran 𝐼)
4 f1of1 6614 . . . 4 (𝐼:dom 𝐼1-1-onto→ran 𝐼𝐼:dom 𝐼1-1→ran 𝐼)
53, 4syl 17 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐼:dom 𝐼1-1→ran 𝐼)
6 dvadia.u . . . . 5 𝑈 = ((DVecA‘𝐾)‘𝑊)
7 dvadia.n . . . . 5 = ((ocA‘𝐾)‘𝑊)
8 dvadia.s . . . . 5 𝑆 = (LSubSp‘𝑈)
91, 6, 2, 7, 8diarnN 38280 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ran 𝐼 = {𝑥𝑆 ∣ ( ‘( 𝑥)) = 𝑥})
10 f1eq3 6572 . . . 4 (ran 𝐼 = {𝑥𝑆 ∣ ( ‘( 𝑥)) = 𝑥} → (𝐼:dom 𝐼1-1→ran 𝐼𝐼:dom 𝐼1-1→{𝑥𝑆 ∣ ( ‘( 𝑥)) = 𝑥}))
119, 10syl 17 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐼:dom 𝐼1-1→ran 𝐼𝐼:dom 𝐼1-1→{𝑥𝑆 ∣ ( ‘( 𝑥)) = 𝑥}))
125, 11mpbid 234 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐼:dom 𝐼1-1→{𝑥𝑆 ∣ ( ‘( 𝑥)) = 𝑥})
13 dff1o5 6624 . 2 (𝐼:dom 𝐼1-1-onto→{𝑥𝑆 ∣ ( ‘( 𝑥)) = 𝑥} ↔ (𝐼:dom 𝐼1-1→{𝑥𝑆 ∣ ( ‘( 𝑥)) = 𝑥} ∧ ran 𝐼 = {𝑥𝑆 ∣ ( ‘( 𝑥)) = 𝑥}))
1412, 9, 13sylanbrc 585 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐼:dom 𝐼1-1-onto→{𝑥𝑆 ∣ ( ‘( 𝑥)) = 𝑥})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  {crab 3142  dom cdm 5555  ran crn 5556  1-1wf1 6352  1-1-ontowf1o 6354  cfv 6355  LSubSpclss 19703  HLchlt 36501  LHypclh 37135  DVecAcdveca 38153  DIsoAcdia 38179  ocAcocaN 38270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-riotaBAD 36104
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-undef 7939  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-n0 11899  df-z 11983  df-uz 12245  df-fz 12894  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-plusg 16578  df-mulr 16579  df-sca 16581  df-vsca 16582  df-proset 17538  df-poset 17556  df-plt 17568  df-lub 17584  df-glb 17585  df-join 17586  df-meet 17587  df-p0 17649  df-p1 17650  df-lat 17656  df-clat 17718  df-lss 19704  df-oposet 36327  df-cmtN 36328  df-ol 36329  df-oml 36330  df-covers 36417  df-ats 36418  df-atl 36449  df-cvlat 36473  df-hlat 36502  df-llines 36649  df-lplanes 36650  df-lvols 36651  df-lines 36652  df-psubsp 36654  df-pmap 36655  df-padd 36947  df-lhyp 37139  df-laut 37140  df-ldil 37255  df-ltrn 37256  df-trl 37310  df-tendo 37906  df-edring 37908  df-dveca 38154  df-disoa 38180  df-docaN 38271
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator