Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dimpropd Structured version   Visualization version   GIF version

Theorem dimpropd 31029
Description: If two structures have the same components (properties), they have the same dimension. (Contributed by Thierry Arnoux, 18-May-2023.)
Hypotheses
Ref Expression
dimpropd.b1 (𝜑𝐵 = (Base‘𝐾))
dimpropd.b2 (𝜑𝐵 = (Base‘𝐿))
dimpropd.w (𝜑𝐵𝑊)
dimpropd.p ((𝜑 ∧ (𝑥𝑊𝑦𝑊)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
dimpropd.s1 ((𝜑 ∧ (𝑥𝑃𝑦𝐵)) → (𝑥( ·𝑠𝐾)𝑦) ∈ 𝑊)
dimpropd.s2 ((𝜑 ∧ (𝑥𝑃𝑦𝐵)) → (𝑥( ·𝑠𝐾)𝑦) = (𝑥( ·𝑠𝐿)𝑦))
dimpropd.f 𝐹 = (Scalar‘𝐾)
dimpropd.g 𝐺 = (Scalar‘𝐿)
dimpropd.p1 (𝜑𝑃 = (Base‘𝐹))
dimpropd.p2 (𝜑𝑃 = (Base‘𝐺))
dimpropd.a ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (𝑥(+g𝐹)𝑦) = (𝑥(+g𝐺)𝑦))
dimpropd.v1 (𝜑𝐾 ∈ LVec)
dimpropd.v2 (𝜑𝐿 ∈ LVec)
Assertion
Ref Expression
dimpropd (𝜑 → (dim‘𝐾) = (dim‘𝐿))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝑥,𝑃,𝑦   𝑥,𝑊,𝑦   𝜑,𝑥,𝑦

Proof of Theorem dimpropd
StepHypRef Expression
1 dimpropd.v1 . . . 4 (𝜑𝐾 ∈ LVec)
2 eqid 2820 . . . . 5 (LBasis‘𝐾) = (LBasis‘𝐾)
32lbsex 19930 . . . 4 (𝐾 ∈ LVec → (LBasis‘𝐾) ≠ ∅)
41, 3syl 17 . . 3 (𝜑 → (LBasis‘𝐾) ≠ ∅)
5 n0 4303 . . 3 ((LBasis‘𝐾) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (LBasis‘𝐾))
64, 5sylib 220 . 2 (𝜑 → ∃𝑥 𝑥 ∈ (LBasis‘𝐾))
72dimval 31023 . . . 4 ((𝐾 ∈ LVec ∧ 𝑥 ∈ (LBasis‘𝐾)) → (dim‘𝐾) = (♯‘𝑥))
81, 7sylan 582 . . 3 ((𝜑𝑥 ∈ (LBasis‘𝐾)) → (dim‘𝐾) = (♯‘𝑥))
9 dimpropd.v2 . . . 4 (𝜑𝐿 ∈ LVec)
10 dimpropd.b1 . . . . . . 7 (𝜑𝐵 = (Base‘𝐾))
11 dimpropd.b2 . . . . . . 7 (𝜑𝐵 = (Base‘𝐿))
12 dimpropd.w . . . . . . 7 (𝜑𝐵𝑊)
13 dimpropd.p . . . . . . 7 ((𝜑 ∧ (𝑥𝑊𝑦𝑊)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
14 dimpropd.s1 . . . . . . 7 ((𝜑 ∧ (𝑥𝑃𝑦𝐵)) → (𝑥( ·𝑠𝐾)𝑦) ∈ 𝑊)
15 dimpropd.s2 . . . . . . 7 ((𝜑 ∧ (𝑥𝑃𝑦𝐵)) → (𝑥( ·𝑠𝐾)𝑦) = (𝑥( ·𝑠𝐿)𝑦))
16 dimpropd.f . . . . . . 7 𝐹 = (Scalar‘𝐾)
17 dimpropd.g . . . . . . 7 𝐺 = (Scalar‘𝐿)
18 dimpropd.p1 . . . . . . 7 (𝜑𝑃 = (Base‘𝐹))
19 dimpropd.p2 . . . . . . 7 (𝜑𝑃 = (Base‘𝐺))
20 dimpropd.a . . . . . . 7 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (𝑥(+g𝐹)𝑦) = (𝑥(+g𝐺)𝑦))
2110, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 1, 9lbspropd 19864 . . . . . 6 (𝜑 → (LBasis‘𝐾) = (LBasis‘𝐿))
2221eleq2d 2897 . . . . 5 (𝜑 → (𝑥 ∈ (LBasis‘𝐾) ↔ 𝑥 ∈ (LBasis‘𝐿)))
2322biimpa 479 . . . 4 ((𝜑𝑥 ∈ (LBasis‘𝐾)) → 𝑥 ∈ (LBasis‘𝐿))
24 eqid 2820 . . . . 5 (LBasis‘𝐿) = (LBasis‘𝐿)
2524dimval 31023 . . . 4 ((𝐿 ∈ LVec ∧ 𝑥 ∈ (LBasis‘𝐿)) → (dim‘𝐿) = (♯‘𝑥))
269, 23, 25syl2an2r 683 . . 3 ((𝜑𝑥 ∈ (LBasis‘𝐾)) → (dim‘𝐿) = (♯‘𝑥))
278, 26eqtr4d 2858 . 2 ((𝜑𝑥 ∈ (LBasis‘𝐾)) → (dim‘𝐾) = (dim‘𝐿))
286, 27exlimddv 1935 1 (𝜑 → (dim‘𝐾) = (dim‘𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1536  wex 1779  wcel 2113  wne 3015  wss 3929  c0 4284  cfv 6348  (class class class)co 7149  chash 13687  Basecbs 16476  +gcplusg 16558  Scalarcsca 16561   ·𝑠 cvsca 16562  LBasisclbs 19839  LVecclvec 19867  dimcldim 31021
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454  ax-reg 9049  ax-inf2 9097  ax-ac2 9878  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-nel 3123  df-ral 3142  df-rex 3143  df-reu 3144  df-rmo 3145  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-pss 3947  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4870  df-iun 4914  df-iin 4915  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-rpss 7442  df-om 7574  df-1st 7682  df-2nd 7683  df-tpos 7885  df-wrecs 7940  df-recs 8001  df-rdg 8039  df-1o 8095  df-oadd 8099  df-er 8282  df-map 8401  df-en 8503  df-dom 8504  df-sdom 8505  df-fin 8506  df-oi 8967  df-r1 9186  df-rank 9187  df-dju 9323  df-card 9361  df-acn 9364  df-ac 9535  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11632  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-xnn0 11962  df-z 11976  df-dec 12093  df-uz 12238  df-fz 12890  df-hash 13688  df-struct 16478  df-ndx 16479  df-slot 16480  df-base 16482  df-sets 16483  df-ress 16484  df-plusg 16571  df-mulr 16572  df-tset 16577  df-ple 16578  df-ocomp 16579  df-0g 16708  df-mre 16850  df-mrc 16851  df-mri 16852  df-acs 16853  df-proset 17531  df-drs 17532  df-poset 17549  df-ipo 17755  df-mgm 17845  df-sgrp 17894  df-mnd 17905  df-submnd 17950  df-grp 18099  df-minusg 18100  df-sbg 18101  df-subg 18269  df-cmn 18901  df-abl 18902  df-mgp 19233  df-ur 19245  df-ring 19292  df-oppr 19366  df-dvdsr 19384  df-unit 19385  df-invr 19415  df-drng 19497  df-lmod 19629  df-lss 19697  df-lsp 19737  df-lbs 19840  df-lvec 19868  df-dim 31022
This theorem is referenced by:  tngdim  31033  matdim  31035
  Copyright terms: Public domain W3C validator