Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diophun Structured version   Visualization version   GIF version

Theorem diophun 36856
Description: If two sets are Diophantine, so is their union. (Contributed by Stefan O'Rear, 9-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.)
Assertion
Ref Expression
diophun ((𝐴 ∈ (Dioph‘𝑁) ∧ 𝐵 ∈ (Dioph‘𝑁)) → (𝐴𝐵) ∈ (Dioph‘𝑁))

Proof of Theorem diophun
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldiophelnn0 36846 . . 3 (𝐴 ∈ (Dioph‘𝑁) → 𝑁 ∈ ℕ0)
2 nnex 10986 . . . . . 6 ℕ ∈ V
32jctr 564 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 ∈ ℕ0 ∧ ℕ ∈ V))
4 1z 11367 . . . . . . 7 1 ∈ ℤ
5 nnuz 11683 . . . . . . . 8 ℕ = (ℤ‘1)
65uzinf 12720 . . . . . . 7 (1 ∈ ℤ → ¬ ℕ ∈ Fin)
74, 6ax-mp 5 . . . . . 6 ¬ ℕ ∈ Fin
8 elfznn 12328 . . . . . . 7 (𝑎 ∈ (1...𝑁) → 𝑎 ∈ ℕ)
98ssriv 3592 . . . . . 6 (1...𝑁) ⊆ ℕ
107, 9pm3.2i 471 . . . . 5 (¬ ℕ ∈ Fin ∧ (1...𝑁) ⊆ ℕ)
11 eldioph2b 36845 . . . . . 6 (((𝑁 ∈ ℕ0 ∧ ℕ ∈ V) ∧ (¬ ℕ ∈ Fin ∧ (1...𝑁) ⊆ ℕ)) → (𝐴 ∈ (Dioph‘𝑁) ↔ ∃𝑎 ∈ (mzPoly‘ℕ)𝐴 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)}))
12 eldioph2b 36845 . . . . . 6 (((𝑁 ∈ ℕ0 ∧ ℕ ∈ V) ∧ (¬ ℕ ∈ Fin ∧ (1...𝑁) ⊆ ℕ)) → (𝐵 ∈ (Dioph‘𝑁) ↔ ∃𝑐 ∈ (mzPoly‘ℕ)𝐵 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)}))
1311, 12anbi12d 746 . . . . 5 (((𝑁 ∈ ℕ0 ∧ ℕ ∈ V) ∧ (¬ ℕ ∈ Fin ∧ (1...𝑁) ⊆ ℕ)) → ((𝐴 ∈ (Dioph‘𝑁) ∧ 𝐵 ∈ (Dioph‘𝑁)) ↔ (∃𝑎 ∈ (mzPoly‘ℕ)𝐴 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∧ ∃𝑐 ∈ (mzPoly‘ℕ)𝐵 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)})))
143, 10, 13sylancl 693 . . . 4 (𝑁 ∈ ℕ0 → ((𝐴 ∈ (Dioph‘𝑁) ∧ 𝐵 ∈ (Dioph‘𝑁)) ↔ (∃𝑎 ∈ (mzPoly‘ℕ)𝐴 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∧ ∃𝑐 ∈ (mzPoly‘ℕ)𝐵 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)})))
15 reeanv 3101 . . . . 5 (∃𝑎 ∈ (mzPoly‘ℕ)∃𝑐 ∈ (mzPoly‘ℕ)(𝐴 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∧ 𝐵 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)}) ↔ (∃𝑎 ∈ (mzPoly‘ℕ)𝐴 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∧ ∃𝑐 ∈ (mzPoly‘ℕ)𝐵 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)}))
16 unab 3876 . . . . . . . . 9 ({𝑏 ∣ ∃𝑑 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∪ {𝑏 ∣ ∃𝑑 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)}) = {𝑏 ∣ (∃𝑑 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∨ ∃𝑑 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0))}
17 r19.43 3087 . . . . . . . . . . 11 (∃𝑑 ∈ (ℕ0𝑚 ℕ)((𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∨ (𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)) ↔ (∃𝑑 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∨ ∃𝑑 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)))
18 andi 910 . . . . . . . . . . . . 13 ((𝑏 = (𝑑 ↾ (1...𝑁)) ∧ ((𝑎𝑑) = 0 ∨ (𝑐𝑑) = 0)) ↔ ((𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∨ (𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)))
19 zex 11346 . . . . . . . . . . . . . . . . . . . 20 ℤ ∈ V
20 nn0ssz 11358 . . . . . . . . . . . . . . . . . . . 20 0 ⊆ ℤ
21 mapss 7860 . . . . . . . . . . . . . . . . . . . 20 ((ℤ ∈ V ∧ ℕ0 ⊆ ℤ) → (ℕ0𝑚 ℕ) ⊆ (ℤ ↑𝑚 ℕ))
2219, 20, 21mp2an 707 . . . . . . . . . . . . . . . . . . 19 (ℕ0𝑚 ℕ) ⊆ (ℤ ↑𝑚 ℕ)
2322sseli 3584 . . . . . . . . . . . . . . . . . 18 (𝑑 ∈ (ℕ0𝑚 ℕ) → 𝑑 ∈ (ℤ ↑𝑚 ℕ))
2423adantl 482 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) ∧ 𝑑 ∈ (ℕ0𝑚 ℕ)) → 𝑑 ∈ (ℤ ↑𝑚 ℕ))
25 fveq2 6158 . . . . . . . . . . . . . . . . . . 19 (𝑒 = 𝑑 → (𝑎𝑒) = (𝑎𝑑))
26 fveq2 6158 . . . . . . . . . . . . . . . . . . 19 (𝑒 = 𝑑 → (𝑐𝑒) = (𝑐𝑑))
2725, 26oveq12d 6633 . . . . . . . . . . . . . . . . . 18 (𝑒 = 𝑑 → ((𝑎𝑒) · (𝑐𝑒)) = ((𝑎𝑑) · (𝑐𝑑)))
28 eqid 2621 . . . . . . . . . . . . . . . . . 18 (𝑒 ∈ (ℤ ↑𝑚 ℕ) ↦ ((𝑎𝑒) · (𝑐𝑒))) = (𝑒 ∈ (ℤ ↑𝑚 ℕ) ↦ ((𝑎𝑒) · (𝑐𝑒)))
29 ovex 6643 . . . . . . . . . . . . . . . . . 18 ((𝑎𝑑) · (𝑐𝑑)) ∈ V
3027, 28, 29fvmpt 6249 . . . . . . . . . . . . . . . . 17 (𝑑 ∈ (ℤ ↑𝑚 ℕ) → ((𝑒 ∈ (ℤ ↑𝑚 ℕ) ↦ ((𝑎𝑒) · (𝑐𝑒)))‘𝑑) = ((𝑎𝑑) · (𝑐𝑑)))
3124, 30syl 17 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) ∧ 𝑑 ∈ (ℕ0𝑚 ℕ)) → ((𝑒 ∈ (ℤ ↑𝑚 ℕ) ↦ ((𝑎𝑒) · (𝑐𝑒)))‘𝑑) = ((𝑎𝑑) · (𝑐𝑑)))
3231eqeq1d 2623 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) ∧ 𝑑 ∈ (ℕ0𝑚 ℕ)) → (((𝑒 ∈ (ℤ ↑𝑚 ℕ) ↦ ((𝑎𝑒) · (𝑐𝑒)))‘𝑑) = 0 ↔ ((𝑎𝑑) · (𝑐𝑑)) = 0))
33 simplrl 799 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) ∧ 𝑑 ∈ (ℕ0𝑚 ℕ)) → 𝑎 ∈ (mzPoly‘ℕ))
34 mzpf 36818 . . . . . . . . . . . . . . . . . . 19 (𝑎 ∈ (mzPoly‘ℕ) → 𝑎:(ℤ ↑𝑚 ℕ)⟶ℤ)
3533, 34syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) ∧ 𝑑 ∈ (ℕ0𝑚 ℕ)) → 𝑎:(ℤ ↑𝑚 ℕ)⟶ℤ)
3635, 24ffvelrnd 6326 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) ∧ 𝑑 ∈ (ℕ0𝑚 ℕ)) → (𝑎𝑑) ∈ ℤ)
3736zcnd 11443 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) ∧ 𝑑 ∈ (ℕ0𝑚 ℕ)) → (𝑎𝑑) ∈ ℂ)
38 simplrr 800 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) ∧ 𝑑 ∈ (ℕ0𝑚 ℕ)) → 𝑐 ∈ (mzPoly‘ℕ))
39 mzpf 36818 . . . . . . . . . . . . . . . . . . 19 (𝑐 ∈ (mzPoly‘ℕ) → 𝑐:(ℤ ↑𝑚 ℕ)⟶ℤ)
4038, 39syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) ∧ 𝑑 ∈ (ℕ0𝑚 ℕ)) → 𝑐:(ℤ ↑𝑚 ℕ)⟶ℤ)
4140, 24ffvelrnd 6326 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) ∧ 𝑑 ∈ (ℕ0𝑚 ℕ)) → (𝑐𝑑) ∈ ℤ)
4241zcnd 11443 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) ∧ 𝑑 ∈ (ℕ0𝑚 ℕ)) → (𝑐𝑑) ∈ ℂ)
4337, 42mul0ord 10637 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) ∧ 𝑑 ∈ (ℕ0𝑚 ℕ)) → (((𝑎𝑑) · (𝑐𝑑)) = 0 ↔ ((𝑎𝑑) = 0 ∨ (𝑐𝑑) = 0)))
4432, 43bitr2d 269 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) ∧ 𝑑 ∈ (ℕ0𝑚 ℕ)) → (((𝑎𝑑) = 0 ∨ (𝑐𝑑) = 0) ↔ ((𝑒 ∈ (ℤ ↑𝑚 ℕ) ↦ ((𝑎𝑒) · (𝑐𝑒)))‘𝑑) = 0))
4544anbi2d 739 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) ∧ 𝑑 ∈ (ℕ0𝑚 ℕ)) → ((𝑏 = (𝑑 ↾ (1...𝑁)) ∧ ((𝑎𝑑) = 0 ∨ (𝑐𝑑) = 0)) ↔ (𝑏 = (𝑑 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑𝑚 ℕ) ↦ ((𝑎𝑒) · (𝑐𝑒)))‘𝑑) = 0)))
4618, 45syl5bbr 274 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) ∧ 𝑑 ∈ (ℕ0𝑚 ℕ)) → (((𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∨ (𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)) ↔ (𝑏 = (𝑑 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑𝑚 ℕ) ↦ ((𝑎𝑒) · (𝑐𝑒)))‘𝑑) = 0)))
4746rexbidva 3044 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → (∃𝑑 ∈ (ℕ0𝑚 ℕ)((𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∨ (𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)) ↔ ∃𝑑 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑𝑚 ℕ) ↦ ((𝑎𝑒) · (𝑐𝑒)))‘𝑑) = 0)))
4817, 47syl5bbr 274 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → ((∃𝑑 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∨ ∃𝑑 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)) ↔ ∃𝑑 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑𝑚 ℕ) ↦ ((𝑎𝑒) · (𝑐𝑒)))‘𝑑) = 0)))
4948abbidv 2738 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → {𝑏 ∣ (∃𝑑 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∨ ∃𝑑 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0))} = {𝑏 ∣ ∃𝑑 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑𝑚 ℕ) ↦ ((𝑎𝑒) · (𝑐𝑒)))‘𝑑) = 0)})
5016, 49syl5eq 2667 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → ({𝑏 ∣ ∃𝑑 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∪ {𝑏 ∣ ∃𝑑 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)}) = {𝑏 ∣ ∃𝑑 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑𝑚 ℕ) ↦ ((𝑎𝑒) · (𝑐𝑒)))‘𝑑) = 0)})
51 simpl 473 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → 𝑁 ∈ ℕ0)
522, 9pm3.2i 471 . . . . . . . . . 10 (ℕ ∈ V ∧ (1...𝑁) ⊆ ℕ)
5352a1i 11 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → (ℕ ∈ V ∧ (1...𝑁) ⊆ ℕ))
54 simprl 793 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → 𝑎 ∈ (mzPoly‘ℕ))
5554, 34syl 17 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → 𝑎:(ℤ ↑𝑚 ℕ)⟶ℤ)
5655feqmptd 6216 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → 𝑎 = (𝑒 ∈ (ℤ ↑𝑚 ℕ) ↦ (𝑎𝑒)))
5756, 54eqeltrrd 2699 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → (𝑒 ∈ (ℤ ↑𝑚 ℕ) ↦ (𝑎𝑒)) ∈ (mzPoly‘ℕ))
58 simprr 795 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → 𝑐 ∈ (mzPoly‘ℕ))
5958, 39syl 17 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → 𝑐:(ℤ ↑𝑚 ℕ)⟶ℤ)
6059feqmptd 6216 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → 𝑐 = (𝑒 ∈ (ℤ ↑𝑚 ℕ) ↦ (𝑐𝑒)))
6160, 58eqeltrrd 2699 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → (𝑒 ∈ (ℤ ↑𝑚 ℕ) ↦ (𝑐𝑒)) ∈ (mzPoly‘ℕ))
62 mzpmulmpt 36824 . . . . . . . . . 10 (((𝑒 ∈ (ℤ ↑𝑚 ℕ) ↦ (𝑎𝑒)) ∈ (mzPoly‘ℕ) ∧ (𝑒 ∈ (ℤ ↑𝑚 ℕ) ↦ (𝑐𝑒)) ∈ (mzPoly‘ℕ)) → (𝑒 ∈ (ℤ ↑𝑚 ℕ) ↦ ((𝑎𝑒) · (𝑐𝑒))) ∈ (mzPoly‘ℕ))
6357, 61, 62syl2anc 692 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → (𝑒 ∈ (ℤ ↑𝑚 ℕ) ↦ ((𝑎𝑒) · (𝑐𝑒))) ∈ (mzPoly‘ℕ))
64 eldioph2 36844 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (ℕ ∈ V ∧ (1...𝑁) ⊆ ℕ) ∧ (𝑒 ∈ (ℤ ↑𝑚 ℕ) ↦ ((𝑎𝑒) · (𝑐𝑒))) ∈ (mzPoly‘ℕ)) → {𝑏 ∣ ∃𝑑 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑𝑚 ℕ) ↦ ((𝑎𝑒) · (𝑐𝑒)))‘𝑑) = 0)} ∈ (Dioph‘𝑁))
6551, 53, 63, 64syl3anc 1323 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → {𝑏 ∣ ∃𝑑 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑𝑚 ℕ) ↦ ((𝑎𝑒) · (𝑐𝑒)))‘𝑑) = 0)} ∈ (Dioph‘𝑁))
6650, 65eqeltrd 2698 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → ({𝑏 ∣ ∃𝑑 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∪ {𝑏 ∣ ∃𝑑 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)}) ∈ (Dioph‘𝑁))
67 uneq12 3746 . . . . . . . 8 ((𝐴 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∧ 𝐵 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)}) → (𝐴𝐵) = ({𝑏 ∣ ∃𝑑 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∪ {𝑏 ∣ ∃𝑑 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)}))
6867eleq1d 2683 . . . . . . 7 ((𝐴 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∧ 𝐵 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)}) → ((𝐴𝐵) ∈ (Dioph‘𝑁) ↔ ({𝑏 ∣ ∃𝑑 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∪ {𝑏 ∣ ∃𝑑 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)}) ∈ (Dioph‘𝑁)))
6966, 68syl5ibrcom 237 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → ((𝐴 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∧ 𝐵 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)}) → (𝐴𝐵) ∈ (Dioph‘𝑁)))
7069rexlimdvva 3033 . . . . 5 (𝑁 ∈ ℕ0 → (∃𝑎 ∈ (mzPoly‘ℕ)∃𝑐 ∈ (mzPoly‘ℕ)(𝐴 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∧ 𝐵 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)}) → (𝐴𝐵) ∈ (Dioph‘𝑁)))
7115, 70syl5bir 233 . . . 4 (𝑁 ∈ ℕ0 → ((∃𝑎 ∈ (mzPoly‘ℕ)𝐴 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∧ ∃𝑐 ∈ (mzPoly‘ℕ)𝐵 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)}) → (𝐴𝐵) ∈ (Dioph‘𝑁)))
7214, 71sylbid 230 . . 3 (𝑁 ∈ ℕ0 → ((𝐴 ∈ (Dioph‘𝑁) ∧ 𝐵 ∈ (Dioph‘𝑁)) → (𝐴𝐵) ∈ (Dioph‘𝑁)))
731, 72syl 17 . 2 (𝐴 ∈ (Dioph‘𝑁) → ((𝐴 ∈ (Dioph‘𝑁) ∧ 𝐵 ∈ (Dioph‘𝑁)) → (𝐴𝐵) ∈ (Dioph‘𝑁)))
7473anabsi5 857 1 ((𝐴 ∈ (Dioph‘𝑁) ∧ 𝐵 ∈ (Dioph‘𝑁)) → (𝐴𝐵) ∈ (Dioph‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384   = wceq 1480  wcel 1987  {cab 2607  wrex 2909  Vcvv 3190  cun 3558  wss 3560  cmpt 4683  cres 5086  wf 5853  cfv 5857  (class class class)co 6615  𝑚 cmap 7817  Fincfn 7915  0cc0 9896  1c1 9897   · cmul 9901  cn 10980  0cn0 11252  cz 11337  ...cfz 12284  mzPolycmzp 36804  Diophcdioph 36837
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-inf2 8498  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-of 6862  df-om 7028  df-1st 7128  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-oadd 7524  df-er 7702  df-map 7819  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-card 8725  df-cda 8950  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-nn 10981  df-n0 11253  df-z 11338  df-uz 11648  df-fz 12285  df-hash 13074  df-mzpcl 36805  df-mzp 36806  df-dioph 36838
This theorem is referenced by:  orrabdioph  36864
  Copyright terms: Public domain W3C validator