Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diophun Structured version   Visualization version   GIF version

Theorem diophun 39390
Description: If two sets are Diophantine, so is their union. (Contributed by Stefan O'Rear, 9-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.)
Assertion
Ref Expression
diophun ((𝐴 ∈ (Dioph‘𝑁) ∧ 𝐵 ∈ (Dioph‘𝑁)) → (𝐴𝐵) ∈ (Dioph‘𝑁))

Proof of Theorem diophun
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldiophelnn0 39381 . . 3 (𝐴 ∈ (Dioph‘𝑁) → 𝑁 ∈ ℕ0)
2 nnex 11644 . . . . . 6 ℕ ∈ V
32jctr 527 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 ∈ ℕ0 ∧ ℕ ∈ V))
4 1z 12013 . . . . . . 7 1 ∈ ℤ
5 nnuz 12282 . . . . . . . 8 ℕ = (ℤ‘1)
65uzinf 13334 . . . . . . 7 (1 ∈ ℤ → ¬ ℕ ∈ Fin)
74, 6ax-mp 5 . . . . . 6 ¬ ℕ ∈ Fin
8 elfznn 12937 . . . . . . 7 (𝑎 ∈ (1...𝑁) → 𝑎 ∈ ℕ)
98ssriv 3971 . . . . . 6 (1...𝑁) ⊆ ℕ
107, 9pm3.2i 473 . . . . 5 (¬ ℕ ∈ Fin ∧ (1...𝑁) ⊆ ℕ)
11 eldioph2b 39380 . . . . . 6 (((𝑁 ∈ ℕ0 ∧ ℕ ∈ V) ∧ (¬ ℕ ∈ Fin ∧ (1...𝑁) ⊆ ℕ)) → (𝐴 ∈ (Dioph‘𝑁) ↔ ∃𝑎 ∈ (mzPoly‘ℕ)𝐴 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)}))
12 eldioph2b 39380 . . . . . 6 (((𝑁 ∈ ℕ0 ∧ ℕ ∈ V) ∧ (¬ ℕ ∈ Fin ∧ (1...𝑁) ⊆ ℕ)) → (𝐵 ∈ (Dioph‘𝑁) ↔ ∃𝑐 ∈ (mzPoly‘ℕ)𝐵 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)}))
1311, 12anbi12d 632 . . . . 5 (((𝑁 ∈ ℕ0 ∧ ℕ ∈ V) ∧ (¬ ℕ ∈ Fin ∧ (1...𝑁) ⊆ ℕ)) → ((𝐴 ∈ (Dioph‘𝑁) ∧ 𝐵 ∈ (Dioph‘𝑁)) ↔ (∃𝑎 ∈ (mzPoly‘ℕ)𝐴 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∧ ∃𝑐 ∈ (mzPoly‘ℕ)𝐵 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)})))
143, 10, 13sylancl 588 . . . 4 (𝑁 ∈ ℕ0 → ((𝐴 ∈ (Dioph‘𝑁) ∧ 𝐵 ∈ (Dioph‘𝑁)) ↔ (∃𝑎 ∈ (mzPoly‘ℕ)𝐴 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∧ ∃𝑐 ∈ (mzPoly‘ℕ)𝐵 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)})))
15 reeanv 3367 . . . . 5 (∃𝑎 ∈ (mzPoly‘ℕ)∃𝑐 ∈ (mzPoly‘ℕ)(𝐴 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∧ 𝐵 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)}) ↔ (∃𝑎 ∈ (mzPoly‘ℕ)𝐴 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∧ ∃𝑐 ∈ (mzPoly‘ℕ)𝐵 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)}))
16 unab 4270 . . . . . . . . 9 ({𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∪ {𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)}) = {𝑏 ∣ (∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∨ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0))}
17 r19.43 3351 . . . . . . . . . . 11 (∃𝑑 ∈ (ℕ0m ℕ)((𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∨ (𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)) ↔ (∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∨ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)))
18 andi 1004 . . . . . . . . . . . . 13 ((𝑏 = (𝑑 ↾ (1...𝑁)) ∧ ((𝑎𝑑) = 0 ∨ (𝑐𝑑) = 0)) ↔ ((𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∨ (𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)))
19 zex 11991 . . . . . . . . . . . . . . . . . . . 20 ℤ ∈ V
20 nn0ssz 12004 . . . . . . . . . . . . . . . . . . . 20 0 ⊆ ℤ
21 mapss 8453 . . . . . . . . . . . . . . . . . . . 20 ((ℤ ∈ V ∧ ℕ0 ⊆ ℤ) → (ℕ0m ℕ) ⊆ (ℤ ↑m ℕ))
2219, 20, 21mp2an 690 . . . . . . . . . . . . . . . . . . 19 (ℕ0m ℕ) ⊆ (ℤ ↑m ℕ)
2322sseli 3963 . . . . . . . . . . . . . . . . . 18 (𝑑 ∈ (ℕ0m ℕ) → 𝑑 ∈ (ℤ ↑m ℕ))
2423adantl 484 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) ∧ 𝑑 ∈ (ℕ0m ℕ)) → 𝑑 ∈ (ℤ ↑m ℕ))
25 fveq2 6670 . . . . . . . . . . . . . . . . . . 19 (𝑒 = 𝑑 → (𝑎𝑒) = (𝑎𝑑))
26 fveq2 6670 . . . . . . . . . . . . . . . . . . 19 (𝑒 = 𝑑 → (𝑐𝑒) = (𝑐𝑑))
2725, 26oveq12d 7174 . . . . . . . . . . . . . . . . . 18 (𝑒 = 𝑑 → ((𝑎𝑒) · (𝑐𝑒)) = ((𝑎𝑑) · (𝑐𝑑)))
28 eqid 2821 . . . . . . . . . . . . . . . . . 18 (𝑒 ∈ (ℤ ↑m ℕ) ↦ ((𝑎𝑒) · (𝑐𝑒))) = (𝑒 ∈ (ℤ ↑m ℕ) ↦ ((𝑎𝑒) · (𝑐𝑒)))
29 ovex 7189 . . . . . . . . . . . . . . . . . 18 ((𝑎𝑑) · (𝑐𝑑)) ∈ V
3027, 28, 29fvmpt 6768 . . . . . . . . . . . . . . . . 17 (𝑑 ∈ (ℤ ↑m ℕ) → ((𝑒 ∈ (ℤ ↑m ℕ) ↦ ((𝑎𝑒) · (𝑐𝑒)))‘𝑑) = ((𝑎𝑑) · (𝑐𝑑)))
3124, 30syl 17 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) ∧ 𝑑 ∈ (ℕ0m ℕ)) → ((𝑒 ∈ (ℤ ↑m ℕ) ↦ ((𝑎𝑒) · (𝑐𝑒)))‘𝑑) = ((𝑎𝑑) · (𝑐𝑑)))
3231eqeq1d 2823 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) ∧ 𝑑 ∈ (ℕ0m ℕ)) → (((𝑒 ∈ (ℤ ↑m ℕ) ↦ ((𝑎𝑒) · (𝑐𝑒)))‘𝑑) = 0 ↔ ((𝑎𝑑) · (𝑐𝑑)) = 0))
33 simplrl 775 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) ∧ 𝑑 ∈ (ℕ0m ℕ)) → 𝑎 ∈ (mzPoly‘ℕ))
34 mzpf 39353 . . . . . . . . . . . . . . . . . . 19 (𝑎 ∈ (mzPoly‘ℕ) → 𝑎:(ℤ ↑m ℕ)⟶ℤ)
3533, 34syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) ∧ 𝑑 ∈ (ℕ0m ℕ)) → 𝑎:(ℤ ↑m ℕ)⟶ℤ)
3635, 24ffvelrnd 6852 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) ∧ 𝑑 ∈ (ℕ0m ℕ)) → (𝑎𝑑) ∈ ℤ)
3736zcnd 12089 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) ∧ 𝑑 ∈ (ℕ0m ℕ)) → (𝑎𝑑) ∈ ℂ)
38 simplrr 776 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) ∧ 𝑑 ∈ (ℕ0m ℕ)) → 𝑐 ∈ (mzPoly‘ℕ))
39 mzpf 39353 . . . . . . . . . . . . . . . . . . 19 (𝑐 ∈ (mzPoly‘ℕ) → 𝑐:(ℤ ↑m ℕ)⟶ℤ)
4038, 39syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) ∧ 𝑑 ∈ (ℕ0m ℕ)) → 𝑐:(ℤ ↑m ℕ)⟶ℤ)
4140, 24ffvelrnd 6852 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) ∧ 𝑑 ∈ (ℕ0m ℕ)) → (𝑐𝑑) ∈ ℤ)
4241zcnd 12089 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) ∧ 𝑑 ∈ (ℕ0m ℕ)) → (𝑐𝑑) ∈ ℂ)
4337, 42mul0ord 11290 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) ∧ 𝑑 ∈ (ℕ0m ℕ)) → (((𝑎𝑑) · (𝑐𝑑)) = 0 ↔ ((𝑎𝑑) = 0 ∨ (𝑐𝑑) = 0)))
4432, 43bitr2d 282 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) ∧ 𝑑 ∈ (ℕ0m ℕ)) → (((𝑎𝑑) = 0 ∨ (𝑐𝑑) = 0) ↔ ((𝑒 ∈ (ℤ ↑m ℕ) ↦ ((𝑎𝑒) · (𝑐𝑒)))‘𝑑) = 0))
4544anbi2d 630 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) ∧ 𝑑 ∈ (ℕ0m ℕ)) → ((𝑏 = (𝑑 ↾ (1...𝑁)) ∧ ((𝑎𝑑) = 0 ∨ (𝑐𝑑) = 0)) ↔ (𝑏 = (𝑑 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m ℕ) ↦ ((𝑎𝑒) · (𝑐𝑒)))‘𝑑) = 0)))
4618, 45syl5bbr 287 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) ∧ 𝑑 ∈ (ℕ0m ℕ)) → (((𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∨ (𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)) ↔ (𝑏 = (𝑑 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m ℕ) ↦ ((𝑎𝑒) · (𝑐𝑒)))‘𝑑) = 0)))
4746rexbidva 3296 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → (∃𝑑 ∈ (ℕ0m ℕ)((𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∨ (𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)) ↔ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m ℕ) ↦ ((𝑎𝑒) · (𝑐𝑒)))‘𝑑) = 0)))
4817, 47syl5bbr 287 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → ((∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∨ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)) ↔ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m ℕ) ↦ ((𝑎𝑒) · (𝑐𝑒)))‘𝑑) = 0)))
4948abbidv 2885 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → {𝑏 ∣ (∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∨ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0))} = {𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m ℕ) ↦ ((𝑎𝑒) · (𝑐𝑒)))‘𝑑) = 0)})
5016, 49syl5eq 2868 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → ({𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∪ {𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)}) = {𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m ℕ) ↦ ((𝑎𝑒) · (𝑐𝑒)))‘𝑑) = 0)})
51 simpl 485 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → 𝑁 ∈ ℕ0)
522, 9pm3.2i 473 . . . . . . . . . 10 (ℕ ∈ V ∧ (1...𝑁) ⊆ ℕ)
5352a1i 11 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → (ℕ ∈ V ∧ (1...𝑁) ⊆ ℕ))
54 simprl 769 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → 𝑎 ∈ (mzPoly‘ℕ))
5554, 34syl 17 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → 𝑎:(ℤ ↑m ℕ)⟶ℤ)
5655feqmptd 6733 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → 𝑎 = (𝑒 ∈ (ℤ ↑m ℕ) ↦ (𝑎𝑒)))
5756, 54eqeltrrd 2914 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → (𝑒 ∈ (ℤ ↑m ℕ) ↦ (𝑎𝑒)) ∈ (mzPoly‘ℕ))
58 simprr 771 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → 𝑐 ∈ (mzPoly‘ℕ))
5958, 39syl 17 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → 𝑐:(ℤ ↑m ℕ)⟶ℤ)
6059feqmptd 6733 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → 𝑐 = (𝑒 ∈ (ℤ ↑m ℕ) ↦ (𝑐𝑒)))
6160, 58eqeltrrd 2914 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → (𝑒 ∈ (ℤ ↑m ℕ) ↦ (𝑐𝑒)) ∈ (mzPoly‘ℕ))
62 mzpmulmpt 39359 . . . . . . . . . 10 (((𝑒 ∈ (ℤ ↑m ℕ) ↦ (𝑎𝑒)) ∈ (mzPoly‘ℕ) ∧ (𝑒 ∈ (ℤ ↑m ℕ) ↦ (𝑐𝑒)) ∈ (mzPoly‘ℕ)) → (𝑒 ∈ (ℤ ↑m ℕ) ↦ ((𝑎𝑒) · (𝑐𝑒))) ∈ (mzPoly‘ℕ))
6357, 61, 62syl2anc 586 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → (𝑒 ∈ (ℤ ↑m ℕ) ↦ ((𝑎𝑒) · (𝑐𝑒))) ∈ (mzPoly‘ℕ))
64 eldioph2 39379 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (ℕ ∈ V ∧ (1...𝑁) ⊆ ℕ) ∧ (𝑒 ∈ (ℤ ↑m ℕ) ↦ ((𝑎𝑒) · (𝑐𝑒))) ∈ (mzPoly‘ℕ)) → {𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m ℕ) ↦ ((𝑎𝑒) · (𝑐𝑒)))‘𝑑) = 0)} ∈ (Dioph‘𝑁))
6551, 53, 63, 64syl3anc 1367 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → {𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m ℕ) ↦ ((𝑎𝑒) · (𝑐𝑒)))‘𝑑) = 0)} ∈ (Dioph‘𝑁))
6650, 65eqeltrd 2913 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → ({𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∪ {𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)}) ∈ (Dioph‘𝑁))
67 uneq12 4134 . . . . . . . 8 ((𝐴 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∧ 𝐵 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)}) → (𝐴𝐵) = ({𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∪ {𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)}))
6867eleq1d 2897 . . . . . . 7 ((𝐴 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∧ 𝐵 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)}) → ((𝐴𝐵) ∈ (Dioph‘𝑁) ↔ ({𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∪ {𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)}) ∈ (Dioph‘𝑁)))
6966, 68syl5ibrcom 249 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → ((𝐴 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∧ 𝐵 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)}) → (𝐴𝐵) ∈ (Dioph‘𝑁)))
7069rexlimdvva 3294 . . . . 5 (𝑁 ∈ ℕ0 → (∃𝑎 ∈ (mzPoly‘ℕ)∃𝑐 ∈ (mzPoly‘ℕ)(𝐴 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∧ 𝐵 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)}) → (𝐴𝐵) ∈ (Dioph‘𝑁)))
7115, 70syl5bir 245 . . . 4 (𝑁 ∈ ℕ0 → ((∃𝑎 ∈ (mzPoly‘ℕ)𝐴 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∧ ∃𝑐 ∈ (mzPoly‘ℕ)𝐵 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)}) → (𝐴𝐵) ∈ (Dioph‘𝑁)))
7214, 71sylbid 242 . . 3 (𝑁 ∈ ℕ0 → ((𝐴 ∈ (Dioph‘𝑁) ∧ 𝐵 ∈ (Dioph‘𝑁)) → (𝐴𝐵) ∈ (Dioph‘𝑁)))
731, 72syl 17 . 2 (𝐴 ∈ (Dioph‘𝑁) → ((𝐴 ∈ (Dioph‘𝑁) ∧ 𝐵 ∈ (Dioph‘𝑁)) → (𝐴𝐵) ∈ (Dioph‘𝑁)))
7473anabsi5 667 1 ((𝐴 ∈ (Dioph‘𝑁) ∧ 𝐵 ∈ (Dioph‘𝑁)) → (𝐴𝐵) ∈ (Dioph‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843   = wceq 1537  wcel 2114  {cab 2799  wrex 3139  Vcvv 3494  cun 3934  wss 3936  cmpt 5146  cres 5557  wf 6351  cfv 6355  (class class class)co 7156  m cmap 8406  Fincfn 8509  0cc0 10537  1c1 10538   · cmul 10542  cn 11638  0cn0 11898  cz 11982  ...cfz 12893  mzPolycmzp 39339  Diophcdioph 39372
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-dju 9330  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-n0 11899  df-z 11983  df-uz 12245  df-fz 12894  df-hash 13692  df-mzpcl 39340  df-mzp 39341  df-dioph 39373
This theorem is referenced by:  orrabdioph  39398
  Copyright terms: Public domain W3C validator