MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprd2db Structured version   Visualization version   GIF version

Theorem dprd2db 18436
Description: The direct product of a collection of direct products. (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypotheses
Ref Expression
dprd2d.1 (𝜑 → Rel 𝐴)
dprd2d.2 (𝜑𝑆:𝐴⟶(SubGrp‘𝐺))
dprd2d.3 (𝜑 → dom 𝐴𝐼)
dprd2d.4 ((𝜑𝑖𝐼) → 𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))
dprd2d.5 (𝜑𝐺dom DProd (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))
dprd2d.k 𝐾 = (mrCls‘(SubGrp‘𝐺))
Assertion
Ref Expression
dprd2db (𝜑 → (𝐺 DProd 𝑆) = (𝐺 DProd (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))))
Distinct variable groups:   𝑖,𝑗,𝐴   𝑖,𝐺,𝑗   𝑖,𝐼   𝑖,𝐾   𝜑,𝑖,𝑗   𝑆,𝑖,𝑗
Allowed substitution hints:   𝐼(𝑗)   𝐾(𝑗)

Proof of Theorem dprd2db
StepHypRef Expression
1 dprd2d.1 . . . 4 (𝜑 → Rel 𝐴)
2 dprd2d.2 . . . 4 (𝜑𝑆:𝐴⟶(SubGrp‘𝐺))
3 dprd2d.3 . . . 4 (𝜑 → dom 𝐴𝐼)
4 dprd2d.4 . . . 4 ((𝜑𝑖𝐼) → 𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))
5 dprd2d.5 . . . 4 (𝜑𝐺dom DProd (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))
6 dprd2d.k . . . 4 𝐾 = (mrCls‘(SubGrp‘𝐺))
71, 2, 3, 4, 5, 6dprd2da 18435 . . 3 (𝜑𝐺dom DProd 𝑆)
86dprdspan 18420 . . 3 (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) = (𝐾 ran 𝑆))
97, 8syl 17 . 2 (𝜑 → (𝐺 DProd 𝑆) = (𝐾 ran 𝑆))
10 relssres 5435 . . . . . . 7 ((Rel 𝐴 ∧ dom 𝐴𝐼) → (𝐴𝐼) = 𝐴)
111, 3, 10syl2anc 693 . . . . . 6 (𝜑 → (𝐴𝐼) = 𝐴)
1211imaeq2d 5464 . . . . 5 (𝜑 → (𝑆 “ (𝐴𝐼)) = (𝑆𝐴))
13 ffn 6043 . . . . . 6 (𝑆:𝐴⟶(SubGrp‘𝐺) → 𝑆 Fn 𝐴)
14 fnima 6008 . . . . . 6 (𝑆 Fn 𝐴 → (𝑆𝐴) = ran 𝑆)
152, 13, 143syl 18 . . . . 5 (𝜑 → (𝑆𝐴) = ran 𝑆)
1612, 15eqtr2d 2656 . . . 4 (𝜑 → ran 𝑆 = (𝑆 “ (𝐴𝐼)))
1716unieqd 4444 . . 3 (𝜑 ran 𝑆 = (𝑆 “ (𝐴𝐼)))
1817fveq2d 6193 . 2 (𝜑 → (𝐾 ran 𝑆) = (𝐾 (𝑆 “ (𝐴𝐼))))
19 ssid 3622 . . . 4 𝐼𝐼
2019a1i 11 . . 3 (𝜑𝐼𝐼)
211, 2, 3, 4, 5, 6, 20dprd2dlem1 18434 . 2 (𝜑 → (𝐾 (𝑆 “ (𝐴𝐼))) = (𝐺 DProd (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))))
229, 18, 213eqtrd 2659 1 (𝜑 → (𝐺 DProd 𝑆) = (𝐺 DProd (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1482  wcel 1989  wss 3572  {csn 4175   cuni 4434   class class class wbr 4651  cmpt 4727  dom cdm 5112  ran crn 5113  cres 5114  cima 5115  Rel wrel 5117   Fn wfn 5881  wf 5882  cfv 5886  (class class class)co 6647  mrClscmrc 16237  SubGrpcsubg 17582   DProd cdprd 18386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-rep 4769  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904  ax-un 6946  ax-inf2 8535  ax-cnex 9989  ax-resscn 9990  ax-1cn 9991  ax-icn 9992  ax-addcl 9993  ax-addrcl 9994  ax-mulcl 9995  ax-mulrcl 9996  ax-mulcom 9997  ax-addass 9998  ax-mulass 9999  ax-distr 10000  ax-i2m1 10001  ax-1ne0 10002  ax-1rid 10003  ax-rnegex 10004  ax-rrecex 10005  ax-cnre 10006  ax-pre-lttri 10007  ax-pre-lttrn 10008  ax-pre-ltadd 10009  ax-pre-mulgt0 10010
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-nel 2897  df-ral 2916  df-rex 2917  df-reu 2918  df-rmo 2919  df-rab 2920  df-v 3200  df-sbc 3434  df-csb 3532  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-pss 3588  df-nul 3914  df-if 4085  df-pw 4158  df-sn 4176  df-pr 4178  df-tp 4180  df-op 4182  df-uni 4435  df-int 4474  df-iun 4520  df-iin 4521  df-br 4652  df-opab 4711  df-mpt 4728  df-tr 4751  df-id 5022  df-eprel 5027  df-po 5033  df-so 5034  df-fr 5071  df-se 5072  df-we 5073  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-rn 5123  df-res 5124  df-ima 5125  df-pred 5678  df-ord 5724  df-on 5725  df-lim 5726  df-suc 5727  df-iota 5849  df-fun 5888  df-fn 5889  df-f 5890  df-f1 5891  df-fo 5892  df-f1o 5893  df-fv 5894  df-isom 5895  df-riota 6608  df-ov 6650  df-oprab 6651  df-mpt2 6652  df-of 6894  df-om 7063  df-1st 7165  df-2nd 7166  df-supp 7293  df-tpos 7349  df-wrecs 7404  df-recs 7465  df-rdg 7503  df-1o 7557  df-oadd 7561  df-er 7739  df-map 7856  df-ixp 7906  df-en 7953  df-dom 7954  df-sdom 7955  df-fin 7956  df-fsupp 8273  df-oi 8412  df-card 8762  df-pnf 10073  df-mnf 10074  df-xr 10075  df-ltxr 10076  df-le 10077  df-sub 10265  df-neg 10266  df-nn 11018  df-2 11076  df-n0 11290  df-z 11375  df-uz 11685  df-fz 12324  df-fzo 12462  df-seq 12797  df-hash 13113  df-ndx 15854  df-slot 15855  df-base 15857  df-sets 15858  df-ress 15859  df-plusg 15948  df-0g 16096  df-gsum 16097  df-mre 16240  df-mrc 16241  df-acs 16243  df-mgm 17236  df-sgrp 17278  df-mnd 17289  df-mhm 17329  df-submnd 17330  df-grp 17419  df-minusg 17420  df-sbg 17421  df-mulg 17535  df-subg 17585  df-ghm 17652  df-gim 17695  df-cntz 17744  df-oppg 17770  df-lsm 18045  df-cmn 18189  df-dprd 18388
This theorem is referenced by:  dprd2d2  18437
  Copyright terms: Public domain W3C validator