Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erdszelem4 Structured version   Visualization version   GIF version

Theorem erdszelem4 30884
Description: Lemma for erdsze 30892. (Contributed by Mario Carneiro, 22-Jan-2015.)
Hypotheses
Ref Expression
erdsze.n (𝜑𝑁 ∈ ℕ)
erdsze.f (𝜑𝐹:(1...𝑁)–1-1→ℝ)
erdszelem.k 𝐾 = (𝑥 ∈ (1...𝑁) ↦ sup((# “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)}), ℝ, < ))
erdszelem.o 𝑂 Or ℝ
Assertion
Ref Expression
erdszelem4 ((𝜑𝐴 ∈ (1...𝑁)) → {𝐴} ∈ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)})
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐴,𝑦   𝑥,𝑂,𝑦   𝑥,𝑁,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐾(𝑥,𝑦)

Proof of Theorem erdszelem4
StepHypRef Expression
1 elfznn 12312 . . . . 5 (𝐴 ∈ (1...𝑁) → 𝐴 ∈ ℕ)
21adantl 482 . . . 4 ((𝜑𝐴 ∈ (1...𝑁)) → 𝐴 ∈ ℕ)
3 elfz1end 12313 . . . 4 (𝐴 ∈ ℕ ↔ 𝐴 ∈ (1...𝐴))
42, 3sylib 208 . . 3 ((𝜑𝐴 ∈ (1...𝑁)) → 𝐴 ∈ (1...𝐴))
54snssd 4309 . 2 ((𝜑𝐴 ∈ (1...𝑁)) → {𝐴} ⊆ (1...𝐴))
6 elsni 4165 . . . . . . 7 (𝑥 ∈ {𝐴} → 𝑥 = 𝐴)
7 elsni 4165 . . . . . . 7 (𝑦 ∈ {𝐴} → 𝑦 = 𝐴)
86, 7breqan12d 4629 . . . . . 6 ((𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴}) → (𝑥 < 𝑦𝐴 < 𝐴))
98adantl 482 . . . . 5 (((𝜑𝐴 ∈ (1...𝑁)) ∧ (𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴})) → (𝑥 < 𝑦𝐴 < 𝐴))
10 fzssuz 12324 . . . . . . . . 9 (1...𝑁) ⊆ (ℤ‘1)
11 uzssz 11651 . . . . . . . . . 10 (ℤ‘1) ⊆ ℤ
12 zssre 11328 . . . . . . . . . 10 ℤ ⊆ ℝ
1311, 12sstri 3592 . . . . . . . . 9 (ℤ‘1) ⊆ ℝ
1410, 13sstri 3592 . . . . . . . 8 (1...𝑁) ⊆ ℝ
15 simpr 477 . . . . . . . . 9 ((𝜑𝐴 ∈ (1...𝑁)) → 𝐴 ∈ (1...𝑁))
1615adantr 481 . . . . . . . 8 (((𝜑𝐴 ∈ (1...𝑁)) ∧ (𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴})) → 𝐴 ∈ (1...𝑁))
1714, 16sseldi 3581 . . . . . . 7 (((𝜑𝐴 ∈ (1...𝑁)) ∧ (𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴})) → 𝐴 ∈ ℝ)
1817ltnrd 10115 . . . . . 6 (((𝜑𝐴 ∈ (1...𝑁)) ∧ (𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴})) → ¬ 𝐴 < 𝐴)
1918pm2.21d 118 . . . . 5 (((𝜑𝐴 ∈ (1...𝑁)) ∧ (𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴})) → (𝐴 < 𝐴 → (𝐹𝑥)𝑂(𝐹𝑦)))
209, 19sylbid 230 . . . 4 (((𝜑𝐴 ∈ (1...𝑁)) ∧ (𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴})) → (𝑥 < 𝑦 → (𝐹𝑥)𝑂(𝐹𝑦)))
2120ralrimivva 2965 . . 3 ((𝜑𝐴 ∈ (1...𝑁)) → ∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐴} (𝑥 < 𝑦 → (𝐹𝑥)𝑂(𝐹𝑦)))
22 erdsze.f . . . . . 6 (𝜑𝐹:(1...𝑁)–1-1→ℝ)
23 f1f 6058 . . . . . 6 (𝐹:(1...𝑁)–1-1→ℝ → 𝐹:(1...𝑁)⟶ℝ)
2422, 23syl 17 . . . . 5 (𝜑𝐹:(1...𝑁)⟶ℝ)
2524adantr 481 . . . 4 ((𝜑𝐴 ∈ (1...𝑁)) → 𝐹:(1...𝑁)⟶ℝ)
2615snssd 4309 . . . 4 ((𝜑𝐴 ∈ (1...𝑁)) → {𝐴} ⊆ (1...𝑁))
27 ltso 10062 . . . . . 6 < Or ℝ
28 soss 5013 . . . . . 6 ((1...𝑁) ⊆ ℝ → ( < Or ℝ → < Or (1...𝑁)))
2914, 27, 28mp2 9 . . . . 5 < Or (1...𝑁)
30 erdszelem.o . . . . 5 𝑂 Or ℝ
31 soisores 6531 . . . . 5 ((( < Or (1...𝑁) ∧ 𝑂 Or ℝ) ∧ (𝐹:(1...𝑁)⟶ℝ ∧ {𝐴} ⊆ (1...𝑁))) → ((𝐹 ↾ {𝐴}) Isom < , 𝑂 ({𝐴}, (𝐹 “ {𝐴})) ↔ ∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐴} (𝑥 < 𝑦 → (𝐹𝑥)𝑂(𝐹𝑦))))
3229, 30, 31mpanl12 717 . . . 4 ((𝐹:(1...𝑁)⟶ℝ ∧ {𝐴} ⊆ (1...𝑁)) → ((𝐹 ↾ {𝐴}) Isom < , 𝑂 ({𝐴}, (𝐹 “ {𝐴})) ↔ ∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐴} (𝑥 < 𝑦 → (𝐹𝑥)𝑂(𝐹𝑦))))
3325, 26, 32syl2anc 692 . . 3 ((𝜑𝐴 ∈ (1...𝑁)) → ((𝐹 ↾ {𝐴}) Isom < , 𝑂 ({𝐴}, (𝐹 “ {𝐴})) ↔ ∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐴} (𝑥 < 𝑦 → (𝐹𝑥)𝑂(𝐹𝑦))))
3421, 33mpbird 247 . 2 ((𝜑𝐴 ∈ (1...𝑁)) → (𝐹 ↾ {𝐴}) Isom < , 𝑂 ({𝐴}, (𝐹 “ {𝐴})))
35 snidg 4177 . . 3 (𝐴 ∈ (1...𝑁) → 𝐴 ∈ {𝐴})
3635adantl 482 . 2 ((𝜑𝐴 ∈ (1...𝑁)) → 𝐴 ∈ {𝐴})
37 eqid 2621 . . 3 {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)} = {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)}
3837erdszelem1 30881 . 2 ({𝐴} ∈ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)} ↔ ({𝐴} ⊆ (1...𝐴) ∧ (𝐹 ↾ {𝐴}) Isom < , 𝑂 ({𝐴}, (𝐹 “ {𝐴})) ∧ 𝐴 ∈ {𝐴}))
395, 34, 36, 38syl3anbrc 1244 1 ((𝜑𝐴 ∈ (1...𝑁)) → {𝐴} ∈ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wral 2907  {crab 2911  wss 3555  𝒫 cpw 4130  {csn 4148   class class class wbr 4613  cmpt 4673   Or wor 4994  cres 5076  cima 5077  wf 5843  1-1wf1 5844  cfv 5847   Isom wiso 5848  (class class class)co 6604  supcsup 8290  cr 9879  1c1 9881   < clt 10018  cn 10964  cz 11321  cuz 11631  ...cfz 12268  #chash 13057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-z 11322  df-uz 11632  df-fz 12269
This theorem is referenced by:  erdszelem5  30885
  Copyright terms: Public domain W3C validator