Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  peano2nn Structured version   Visualization version   GIF version

Theorem peano2nn 11070
 Description: Peano postulate: a successor of a positive integer is a positive integer. (Contributed by NM, 11-Jan-1997.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
peano2nn (𝐴 ∈ ℕ → (𝐴 + 1) ∈ ℕ)

Proof of Theorem peano2nn
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frfnom 7575 . . . 4 (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) Fn ω
2 fvelrnb 6282 . . . 4 ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) Fn ω → (𝐴 ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) ↔ ∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) = 𝐴))
31, 2ax-mp 5 . . 3 (𝐴 ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) ↔ ∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) = 𝐴)
4 ovex 6718 . . . . . . 7 (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1) ∈ V
5 eqid 2651 . . . . . . . 8 (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)
6 oveq1 6697 . . . . . . . 8 (𝑧 = 𝑥 → (𝑧 + 1) = (𝑥 + 1))
7 oveq1 6697 . . . . . . . 8 (𝑧 = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) → (𝑧 + 1) = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1))
85, 6, 7frsucmpt2 7580 . . . . . . 7 ((𝑦 ∈ ω ∧ (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1) ∈ V) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘suc 𝑦) = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1))
94, 8mpan2 707 . . . . . 6 (𝑦 ∈ ω → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘suc 𝑦) = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1))
10 peano2 7128 . . . . . . . 8 (𝑦 ∈ ω → suc 𝑦 ∈ ω)
11 fnfvelrn 6396 . . . . . . . 8 (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) Fn ω ∧ suc 𝑦 ∈ ω) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘suc 𝑦) ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω))
121, 10, 11sylancr 696 . . . . . . 7 (𝑦 ∈ ω → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘suc 𝑦) ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω))
13 df-nn 11059 . . . . . . . 8 ℕ = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) “ ω)
14 df-ima 5156 . . . . . . . 8 (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) “ ω) = ran (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)
1513, 14eqtri 2673 . . . . . . 7 ℕ = ran (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)
1612, 15syl6eleqr 2741 . . . . . 6 (𝑦 ∈ ω → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘suc 𝑦) ∈ ℕ)
179, 16eqeltrrd 2731 . . . . 5 (𝑦 ∈ ω → (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1) ∈ ℕ)
18 oveq1 6697 . . . . . 6 (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) = 𝐴 → (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1) = (𝐴 + 1))
1918eleq1d 2715 . . . . 5 (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) = 𝐴 → ((((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1) ∈ ℕ ↔ (𝐴 + 1) ∈ ℕ))
2017, 19syl5ibcom 235 . . . 4 (𝑦 ∈ ω → (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) = 𝐴 → (𝐴 + 1) ∈ ℕ))
2120rexlimiv 3056 . . 3 (∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) = 𝐴 → (𝐴 + 1) ∈ ℕ)
223, 21sylbi 207 . 2 (𝐴 ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) → (𝐴 + 1) ∈ ℕ)
2322, 15eleq2s 2748 1 (𝐴 ∈ ℕ → (𝐴 + 1) ∈ ℕ)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   = wceq 1523   ∈ wcel 2030  ∃wrex 2942  Vcvv 3231   ↦ cmpt 4762  ran crn 5144   ↾ cres 5145   “ cima 5146  suc csuc 5763   Fn wfn 5921  ‘cfv 5926  (class class class)co 6690  ωcom 7107  reccrdg 7550  1c1 9975   + caddc 9977  ℕcn 11058 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-om 7108  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-nn 11059 This theorem is referenced by:  dfnn2  11071  dfnn3  11072  peano2nnd  11075  nnind  11076  nnaddcl  11080  2nn  11223  3nn  11224  4nn  11225  5nn  11226  6nn  11227  7nn  11228  8nn  11229  9nn  11230  10nnOLD  11231  nnunb  11326  nneo  11499  10nn  11552  fzonn0p1p1  12586  ser1const  12897  expp1  12907  facp1  13105  relexpsucnnl  13816  isercolllem1  14439  isercoll2  14443  climcndslem2  14626  climcnds  14627  harmonic  14635  trireciplem  14638  trirecip  14639  rpnnen2lem9  14995  sqrt2irr  15023  nno  15145  nnoddm1d2  15149  rplpwr  15323  prmind2  15445  eulerthlem2  15534  pcmpt  15643  pockthi  15658  prmreclem6  15672  dec5nprm  15817  mulgnnp1  17596  chfacfisf  20707  chfacfisfcpmat  20708  cayhamlem1  20719  1stcfb  21296  bcthlem3  23169  bcthlem4  23170  ovolunlem1a  23310  ovolicc2lem4  23334  voliunlem1  23364  volsup  23370  volsup2  23419  itg1climres  23526  mbfi1fseqlem5  23531  itg2monolem1  23562  itg2i1fseqle  23566  itg2i1fseq  23567  itg2i1fseq2  23568  itg2addlem  23570  itg2gt0  23572  itg2cnlem1  23573  aaliou3lem7  24149  emcllem1  24767  emcllem2  24768  emcllem3  24769  emcllem5  24771  emcllem6  24772  emcllem7  24773  zetacvg  24786  lgam1  24835  bclbnd  25050  bposlem5  25058  2sqlem10  25198  dchrisumlem2  25224  logdivbnd  25290  pntrsumo1  25299  pntrsumbnd  25300  wwlksext2clwwlk  27021  wwlksext2clwwlkOLD  27022  numclwwlk2lem1  27356  numclwlk2lem2f  27357  numclwwlk2lem1OLD  27363  numclwlk2lem2fOLD  27364  opsqrlem5  29131  opsqrlem6  29132  nnindf  29693  psgnfzto1st  29983  esumpmono  30269  fibp1  30591  rrvsum  30644  subfacp1lem6  31293  subfaclim  31296  bcprod  31750  bccolsum  31751  iprodgam  31754  faclimlem1  31755  faclimlem2  31756  faclim2  31760  nn0prpwlem  32442  mblfinlem2  33577  volsupnfl  33584  seqpo  33673  incsequz  33674  incsequz2  33675  geomcau  33685  heiborlem6  33745  bfplem1  33751  jm2.27dlem4  37896  nnsplit  39887  sumnnodd  40180  stoweidlem20  40555  wallispilem4  40603  wallispi2lem1  40606  wallispi2lem2  40607  stirlinglem4  40612  stirlinglem8  40616  stirlinglem11  40619  stirlinglem12  40620  stirlinglem13  40621  vonioolem2  41216  vonicclem2  41219  deccarry  41646  iccpartres  41679  iccelpart  41694  odz2prm2pw  41800  fmtnoprmfac1  41802  fmtnoprmfac2  41804  lighneallem4  41852
 Copyright terms: Public domain W3C validator