Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgpnabl Structured version   Visualization version   GIF version

Theorem frgpnabl 18218
 Description: The free group on two or more generators is not abelian. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypothesis
Ref Expression
frgpnabl.g 𝐺 = (freeGrp‘𝐼)
Assertion
Ref Expression
frgpnabl (1𝑜𝐼 → ¬ 𝐺 ∈ Abel)

Proof of Theorem frgpnabl
Dummy variables 𝑎 𝑏 𝑥 𝑛 𝑣 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relsdom 7922 . . . . 5 Rel ≺
21brrelex2i 5129 . . . 4 (1𝑜𝐼𝐼 ∈ V)
3 1sdom 8123 . . . 4 (𝐼 ∈ V → (1𝑜𝐼 ↔ ∃𝑎𝐼𝑏𝐼 ¬ 𝑎 = 𝑏))
42, 3syl 17 . . 3 (1𝑜𝐼 → (1𝑜𝐼 ↔ ∃𝑎𝐼𝑏𝐼 ¬ 𝑎 = 𝑏))
54ibi 256 . 2 (1𝑜𝐼 → ∃𝑎𝐼𝑏𝐼 ¬ 𝑎 = 𝑏)
6 frgpnabl.g . . . . . 6 𝐺 = (freeGrp‘𝐼)
7 eqid 2621 . . . . . 6 ( I ‘Word (𝐼 × 2𝑜)) = ( I ‘Word (𝐼 × 2𝑜))
8 eqid 2621 . . . . . 6 ( ~FG𝐼) = ( ~FG𝐼)
9 eqid 2621 . . . . . 6 (+g𝐺) = (+g𝐺)
10 eqid 2621 . . . . . 6 (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩) = (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)
11 eqid 2621 . . . . . 6 (𝑣 ∈ ( I ‘Word (𝐼 × 2𝑜)) ↦ (𝑛 ∈ (0...(#‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤((𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)‘𝑤)”⟩⟩))) = (𝑣 ∈ ( I ‘Word (𝐼 × 2𝑜)) ↦ (𝑛 ∈ (0...(#‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤((𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)‘𝑤)”⟩⟩)))
12 eqid 2621 . . . . . 6 (( I ‘Word (𝐼 × 2𝑜)) ∖ 𝑥 ∈ ( I ‘Word (𝐼 × 2𝑜))ran ((𝑣 ∈ ( I ‘Word (𝐼 × 2𝑜)) ↦ (𝑛 ∈ (0...(#‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤((𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)‘𝑤)”⟩⟩)))‘𝑥)) = (( I ‘Word (𝐼 × 2𝑜)) ∖ 𝑥 ∈ ( I ‘Word (𝐼 × 2𝑜))ran ((𝑣 ∈ ( I ‘Word (𝐼 × 2𝑜)) ↦ (𝑛 ∈ (0...(#‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤((𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)‘𝑤)”⟩⟩)))‘𝑥))
13 eqid 2621 . . . . . 6 (varFGrp𝐼) = (varFGrp𝐼)
142ad2antrr 761 . . . . . 6 (((1𝑜𝐼 ∧ (𝑎𝐼𝑏𝐼)) ∧ 𝐺 ∈ Abel) → 𝐼 ∈ V)
15 simplrl 799 . . . . . 6 (((1𝑜𝐼 ∧ (𝑎𝐼𝑏𝐼)) ∧ 𝐺 ∈ Abel) → 𝑎𝐼)
16 simplrr 800 . . . . . 6 (((1𝑜𝐼 ∧ (𝑎𝐼𝑏𝐼)) ∧ 𝐺 ∈ Abel) → 𝑏𝐼)
17 simpr 477 . . . . . . 7 (((1𝑜𝐼 ∧ (𝑎𝐼𝑏𝐼)) ∧ 𝐺 ∈ Abel) → 𝐺 ∈ Abel)
18 eqid 2621 . . . . . . . . . 10 (Base‘𝐺) = (Base‘𝐺)
198, 13, 6, 18vrgpf 18121 . . . . . . . . 9 (𝐼 ∈ V → (varFGrp𝐼):𝐼⟶(Base‘𝐺))
2014, 19syl 17 . . . . . . . 8 (((1𝑜𝐼 ∧ (𝑎𝐼𝑏𝐼)) ∧ 𝐺 ∈ Abel) → (varFGrp𝐼):𝐼⟶(Base‘𝐺))
2120, 15ffvelrnd 6326 . . . . . . 7 (((1𝑜𝐼 ∧ (𝑎𝐼𝑏𝐼)) ∧ 𝐺 ∈ Abel) → ((varFGrp𝐼)‘𝑎) ∈ (Base‘𝐺))
2220, 16ffvelrnd 6326 . . . . . . 7 (((1𝑜𝐼 ∧ (𝑎𝐼𝑏𝐼)) ∧ 𝐺 ∈ Abel) → ((varFGrp𝐼)‘𝑏) ∈ (Base‘𝐺))
2318, 9ablcom 18150 . . . . . . 7 ((𝐺 ∈ Abel ∧ ((varFGrp𝐼)‘𝑎) ∈ (Base‘𝐺) ∧ ((varFGrp𝐼)‘𝑏) ∈ (Base‘𝐺)) → (((varFGrp𝐼)‘𝑎)(+g𝐺)((varFGrp𝐼)‘𝑏)) = (((varFGrp𝐼)‘𝑏)(+g𝐺)((varFGrp𝐼)‘𝑎)))
2417, 21, 22, 23syl3anc 1323 . . . . . 6 (((1𝑜𝐼 ∧ (𝑎𝐼𝑏𝐼)) ∧ 𝐺 ∈ Abel) → (((varFGrp𝐼)‘𝑎)(+g𝐺)((varFGrp𝐼)‘𝑏)) = (((varFGrp𝐼)‘𝑏)(+g𝐺)((varFGrp𝐼)‘𝑎)))
256, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 24frgpnabllem2 18217 . . . . 5 (((1𝑜𝐼 ∧ (𝑎𝐼𝑏𝐼)) ∧ 𝐺 ∈ Abel) → 𝑎 = 𝑏)
2625ex 450 . . . 4 ((1𝑜𝐼 ∧ (𝑎𝐼𝑏𝐼)) → (𝐺 ∈ Abel → 𝑎 = 𝑏))
2726con3d 148 . . 3 ((1𝑜𝐼 ∧ (𝑎𝐼𝑏𝐼)) → (¬ 𝑎 = 𝑏 → ¬ 𝐺 ∈ Abel))
2827rexlimdvva 3033 . 2 (1𝑜𝐼 → (∃𝑎𝐼𝑏𝐼 ¬ 𝑎 = 𝑏 → ¬ 𝐺 ∈ Abel))
295, 28mpd 15 1 (1𝑜𝐼 → ¬ 𝐺 ∈ Abel)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 384   = wceq 1480   ∈ wcel 1987  ∃wrex 2909  Vcvv 3190   ∖ cdif 3557  ⟨cop 4161  ⟨cotp 4163  ∪ ciun 4492   class class class wbr 4623   ↦ cmpt 4683   I cid 4994   × cxp 5082  ran crn 5085  ⟶wf 5853  ‘cfv 5857  (class class class)co 6615   ↦ cmpt2 6617  1𝑜c1o 7513  2𝑜c2o 7514   ≺ csdm 7914  0cc0 9896  ...cfz 12284  #chash 13073  Word cword 13246   splice csplice 13251  ⟨“cs2 13539  Basecbs 15800  +gcplusg 15881   ~FG cefg 18059  freeGrpcfrgp 18060  varFGrpcvrgp 18061  Abelcabl 18134 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-ot 4164  df-uni 4410  df-int 4448  df-iun 4494  df-iin 4495  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-1st 7128  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-2o 7521  df-oadd 7524  df-er 7702  df-ec 7704  df-qs 7708  df-map 7819  df-pm 7820  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-sup 8308  df-inf 8309  df-card 8725  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-nn 10981  df-2 11039  df-3 11040  df-4 11041  df-5 11042  df-6 11043  df-7 11044  df-8 11045  df-9 11046  df-n0 11253  df-xnn0 11324  df-z 11338  df-dec 11454  df-uz 11648  df-rp 11793  df-fz 12285  df-fzo 12423  df-hash 13074  df-word 13254  df-lsw 13255  df-concat 13256  df-s1 13257  df-substr 13258  df-splice 13259  df-reverse 13260  df-s2 13546  df-struct 15802  df-ndx 15803  df-slot 15804  df-base 15805  df-plusg 15894  df-mulr 15895  df-sca 15897  df-vsca 15898  df-ip 15899  df-tset 15900  df-ple 15901  df-ds 15904  df-0g 16042  df-imas 16108  df-qus 16109  df-mgm 17182  df-sgrp 17224  df-mnd 17235  df-frmd 17326  df-grp 17365  df-efg 18062  df-frgp 18063  df-vrgp 18064  df-cmn 18135  df-abl 18136 This theorem is referenced by:  frgpcyg  19862
 Copyright terms: Public domain W3C validator