Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funcrngcsetcALT Structured version   Visualization version   GIF version

Theorem funcrngcsetcALT 44290
Description: Alternate proof of funcrngcsetc 44289, using cofuval2 17157 to construct the "natural forgetful functor" from the category of non-unital rings into the category of sets by composing the "inclusion functor" from the category of non-unital rings into the category of extensible structures, see rngcifuestrc 44288, and the "natural forgetful functor" from the category of extensible structures into the category of sets, see funcestrcsetc 17399. Surprisingly, this proof is longer than the direct proof given in funcrngcsetc 44289. (Contributed by AV, 30-Mar-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
funcrngcsetcALT.r 𝑅 = (RngCat‘𝑈)
funcrngcsetcALT.s 𝑆 = (SetCat‘𝑈)
funcrngcsetcALT.b 𝐵 = (Base‘𝑅)
funcrngcsetcALT.u (𝜑𝑈 ∈ WUni)
funcrngcsetcALT.f (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
funcrngcsetcALT.g (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ (𝑥 RngHomo 𝑦))))
Assertion
Ref Expression
funcrngcsetcALT (𝜑𝐹(𝑅 Func 𝑆)𝐺)
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦   𝑥,𝑈,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑆(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem funcrngcsetcALT
Dummy variables 𝑓 𝑔 𝑢 𝑤 𝑧 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funcrngcsetcALT.f . . . . . . 7 (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
2 fveq2 6670 . . . . . . . 8 (𝑥 = 𝑢 → (Base‘𝑥) = (Base‘𝑢))
32cbvmptv 5169 . . . . . . 7 (𝑥𝐵 ↦ (Base‘𝑥)) = (𝑢𝐵 ↦ (Base‘𝑢))
41, 3syl6eq 2872 . . . . . 6 (𝜑𝐹 = (𝑢𝐵 ↦ (Base‘𝑢)))
5 coires1 6117 . . . . . . 7 ((𝑢𝑈 ↦ (Base‘𝑢)) ∘ ( I ↾ 𝐵)) = ((𝑢𝑈 ↦ (Base‘𝑢)) ↾ 𝐵)
6 funcrngcsetcALT.r . . . . . . . . . . . 12 𝑅 = (RngCat‘𝑈)
7 funcrngcsetcALT.b . . . . . . . . . . . 12 𝐵 = (Base‘𝑅)
8 funcrngcsetcALT.u . . . . . . . . . . . 12 (𝜑𝑈 ∈ WUni)
96, 7, 8rngcbas 44256 . . . . . . . . . . 11 (𝜑𝐵 = (𝑈 ∩ Rng))
109eleq2d 2898 . . . . . . . . . 10 (𝜑 → (𝑥𝐵𝑥 ∈ (𝑈 ∩ Rng)))
11 elin 4169 . . . . . . . . . . 11 (𝑥 ∈ (𝑈 ∩ Rng) ↔ (𝑥𝑈𝑥 ∈ Rng))
1211simplbi 500 . . . . . . . . . 10 (𝑥 ∈ (𝑈 ∩ Rng) → 𝑥𝑈)
1310, 12syl6bi 255 . . . . . . . . 9 (𝜑 → (𝑥𝐵𝑥𝑈))
1413ssrdv 3973 . . . . . . . 8 (𝜑𝐵𝑈)
1514resmptd 5908 . . . . . . 7 (𝜑 → ((𝑢𝑈 ↦ (Base‘𝑢)) ↾ 𝐵) = (𝑢𝐵 ↦ (Base‘𝑢)))
165, 15syl5req 2869 . . . . . 6 (𝜑 → (𝑢𝐵 ↦ (Base‘𝑢)) = ((𝑢𝑈 ↦ (Base‘𝑢)) ∘ ( I ↾ 𝐵)))
174, 16eqtrd 2856 . . . . 5 (𝜑𝐹 = ((𝑢𝑈 ↦ (Base‘𝑢)) ∘ ( I ↾ 𝐵)))
18 funcrngcsetcALT.g . . . . . . 7 (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ (𝑥 RngHomo 𝑦))))
19 coires1 6117 . . . . . . . . 9 (( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))) ∘ ( I ↾ (𝑥 RngHomo 𝑦))) = (( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))) ↾ (𝑥 RngHomo 𝑦))
20 eqid 2821 . . . . . . . . . . . . 13 (Base‘𝑥) = (Base‘𝑥)
21 eqid 2821 . . . . . . . . . . . . 13 (Base‘𝑦) = (Base‘𝑦)
2220, 21rnghmf 44190 . . . . . . . . . . . 12 (𝑧 ∈ (𝑥 RngHomo 𝑦) → 𝑧:(Base‘𝑥)⟶(Base‘𝑦))
23 fvex 6683 . . . . . . . . . . . . . 14 (Base‘𝑦) ∈ V
24 fvex 6683 . . . . . . . . . . . . . 14 (Base‘𝑥) ∈ V
2523, 24pm3.2i 473 . . . . . . . . . . . . 13 ((Base‘𝑦) ∈ V ∧ (Base‘𝑥) ∈ V)
26 elmapg 8419 . . . . . . . . . . . . 13 (((Base‘𝑦) ∈ V ∧ (Base‘𝑥) ∈ V) → (𝑧 ∈ ((Base‘𝑦) ↑m (Base‘𝑥)) ↔ 𝑧:(Base‘𝑥)⟶(Base‘𝑦)))
2725, 26mp1i 13 . . . . . . . . . . . 12 ((𝜑𝑥𝐵𝑦𝐵) → (𝑧 ∈ ((Base‘𝑦) ↑m (Base‘𝑥)) ↔ 𝑧:(Base‘𝑥)⟶(Base‘𝑦)))
2822, 27syl5ibr 248 . . . . . . . . . . 11 ((𝜑𝑥𝐵𝑦𝐵) → (𝑧 ∈ (𝑥 RngHomo 𝑦) → 𝑧 ∈ ((Base‘𝑦) ↑m (Base‘𝑥))))
2928ssrdv 3973 . . . . . . . . . 10 ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 RngHomo 𝑦) ⊆ ((Base‘𝑦) ↑m (Base‘𝑥)))
3029resabs1d 5884 . . . . . . . . 9 ((𝜑𝑥𝐵𝑦𝐵) → (( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))) ↾ (𝑥 RngHomo 𝑦)) = ( I ↾ (𝑥 RngHomo 𝑦)))
3119, 30syl5req 2869 . . . . . . . 8 ((𝜑𝑥𝐵𝑦𝐵) → ( I ↾ (𝑥 RngHomo 𝑦)) = (( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))) ∘ ( I ↾ (𝑥 RngHomo 𝑦))))
3231mpoeq3dva 7231 . . . . . . 7 (𝜑 → (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ (𝑥 RngHomo 𝑦))) = (𝑥𝐵, 𝑦𝐵 ↦ (( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))) ∘ ( I ↾ (𝑥 RngHomo 𝑦)))))
3318, 32eqtrd 2856 . . . . . 6 (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ (( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))) ∘ ( I ↾ (𝑥 RngHomo 𝑦)))))
347a1i 11 . . . . . . 7 (𝜑𝐵 = (Base‘𝑅))
357a1i 11 . . . . . . 7 ((𝜑𝑥𝐵) → 𝐵 = (Base‘𝑅))
36 fvresi 6935 . . . . . . . . . . . 12 (𝑥𝐵 → (( I ↾ 𝐵)‘𝑥) = 𝑥)
3736adantr 483 . . . . . . . . . . 11 ((𝑥𝐵𝑦𝐵) → (( I ↾ 𝐵)‘𝑥) = 𝑥)
3837adantl 484 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (( I ↾ 𝐵)‘𝑥) = 𝑥)
39 fvresi 6935 . . . . . . . . . . . 12 (𝑦𝐵 → (( I ↾ 𝐵)‘𝑦) = 𝑦)
4039adantl 484 . . . . . . . . . . 11 ((𝑥𝐵𝑦𝐵) → (( I ↾ 𝐵)‘𝑦) = 𝑦)
4140adantl 484 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (( I ↾ 𝐵)‘𝑦) = 𝑦)
4238, 41oveq12d 7174 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((( I ↾ 𝐵)‘𝑥)(𝑤𝑈, 𝑧𝑈 ↦ ( I ↾ ((Base‘𝑧) ↑m (Base‘𝑤))))(( I ↾ 𝐵)‘𝑦)) = (𝑥(𝑤𝑈, 𝑧𝑈 ↦ ( I ↾ ((Base‘𝑧) ↑m (Base‘𝑤))))𝑦))
43 eqidd 2822 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑤𝑈, 𝑧𝑈 ↦ ( I ↾ ((Base‘𝑧) ↑m (Base‘𝑤)))) = (𝑤𝑈, 𝑧𝑈 ↦ ( I ↾ ((Base‘𝑧) ↑m (Base‘𝑤)))))
44 simprr 771 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑤 = 𝑥𝑧 = 𝑦)) → 𝑧 = 𝑦)
4544fveq2d 6674 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑤 = 𝑥𝑧 = 𝑦)) → (Base‘𝑧) = (Base‘𝑦))
46 simprl 769 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑤 = 𝑥𝑧 = 𝑦)) → 𝑤 = 𝑥)
4746fveq2d 6674 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑤 = 𝑥𝑧 = 𝑦)) → (Base‘𝑤) = (Base‘𝑥))
4845, 47oveq12d 7174 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑤 = 𝑥𝑧 = 𝑦)) → ((Base‘𝑧) ↑m (Base‘𝑤)) = ((Base‘𝑦) ↑m (Base‘𝑥)))
4948reseq2d 5853 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑤 = 𝑥𝑧 = 𝑦)) → ( I ↾ ((Base‘𝑧) ↑m (Base‘𝑤))) = ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))
5013com12 32 . . . . . . . . . . . 12 (𝑥𝐵 → (𝜑𝑥𝑈))
5150adantr 483 . . . . . . . . . . 11 ((𝑥𝐵𝑦𝐵) → (𝜑𝑥𝑈))
5251impcom 410 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝑈)
539eleq2d 2898 . . . . . . . . . . . . 13 (𝜑 → (𝑦𝐵𝑦 ∈ (𝑈 ∩ Rng)))
54 elin 4169 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝑈 ∩ Rng) ↔ (𝑦𝑈𝑦 ∈ Rng))
5554simplbi 500 . . . . . . . . . . . . 13 (𝑦 ∈ (𝑈 ∩ Rng) → 𝑦𝑈)
5653, 55syl6bi 255 . . . . . . . . . . . 12 (𝜑 → (𝑦𝐵𝑦𝑈))
5756a1d 25 . . . . . . . . . . 11 (𝜑 → (𝑥𝐵 → (𝑦𝐵𝑦𝑈)))
5857imp32 421 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑦𝑈)
59 ovex 7189 . . . . . . . . . . . 12 ((Base‘𝑦) ↑m (Base‘𝑥)) ∈ V
6059a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((Base‘𝑦) ↑m (Base‘𝑥)) ∈ V)
6160resiexd 6979 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))) ∈ V)
6243, 49, 52, 58, 61ovmpod 7302 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(𝑤𝑈, 𝑧𝑈 ↦ ( I ↾ ((Base‘𝑧) ↑m (Base‘𝑤))))𝑦) = ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))
6342, 62eqtr2d 2857 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))) = ((( I ↾ 𝐵)‘𝑥)(𝑤𝑈, 𝑧𝑈 ↦ ( I ↾ ((Base‘𝑧) ↑m (Base‘𝑤))))(( I ↾ 𝐵)‘𝑦)))
64 eqidd 2822 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑓𝐵, 𝑔𝐵 ↦ ( I ↾ (𝑓 RngHomo 𝑔))) = (𝑓𝐵, 𝑔𝐵 ↦ ( I ↾ (𝑓 RngHomo 𝑔))))
65 oveq12 7165 . . . . . . . . . . . 12 ((𝑓 = 𝑥𝑔 = 𝑦) → (𝑓 RngHomo 𝑔) = (𝑥 RngHomo 𝑦))
6665reseq2d 5853 . . . . . . . . . . 11 ((𝑓 = 𝑥𝑔 = 𝑦) → ( I ↾ (𝑓 RngHomo 𝑔)) = ( I ↾ (𝑥 RngHomo 𝑦)))
6766adantl 484 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑓 = 𝑥𝑔 = 𝑦)) → ( I ↾ (𝑓 RngHomo 𝑔)) = ( I ↾ (𝑥 RngHomo 𝑦)))
68 simprl 769 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
69 simprr 771 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑦𝐵)
70 ovex 7189 . . . . . . . . . . . 12 (𝑥 RngHomo 𝑦) ∈ V
7170a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 RngHomo 𝑦) ∈ V)
7271resiexd 6979 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ( I ↾ (𝑥 RngHomo 𝑦)) ∈ V)
7364, 67, 68, 69, 72ovmpod 7302 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(𝑓𝐵, 𝑔𝐵 ↦ ( I ↾ (𝑓 RngHomo 𝑔)))𝑦) = ( I ↾ (𝑥 RngHomo 𝑦)))
7473eqcomd 2827 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ( I ↾ (𝑥 RngHomo 𝑦)) = (𝑥(𝑓𝐵, 𝑔𝐵 ↦ ( I ↾ (𝑓 RngHomo 𝑔)))𝑦))
7563, 74coeq12d 5735 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))) ∘ ( I ↾ (𝑥 RngHomo 𝑦))) = (((( I ↾ 𝐵)‘𝑥)(𝑤𝑈, 𝑧𝑈 ↦ ( I ↾ ((Base‘𝑧) ↑m (Base‘𝑤))))(( I ↾ 𝐵)‘𝑦)) ∘ (𝑥(𝑓𝐵, 𝑔𝐵 ↦ ( I ↾ (𝑓 RngHomo 𝑔)))𝑦)))
7634, 35, 75mpoeq123dva 7228 . . . . . 6 (𝜑 → (𝑥𝐵, 𝑦𝐵 ↦ (( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))) ∘ ( I ↾ (𝑥 RngHomo 𝑦)))) = (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑅) ↦ (((( I ↾ 𝐵)‘𝑥)(𝑤𝑈, 𝑧𝑈 ↦ ( I ↾ ((Base‘𝑧) ↑m (Base‘𝑤))))(( I ↾ 𝐵)‘𝑦)) ∘ (𝑥(𝑓𝐵, 𝑔𝐵 ↦ ( I ↾ (𝑓 RngHomo 𝑔)))𝑦))))
7733, 76eqtrd 2856 . . . . 5 (𝜑𝐺 = (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑅) ↦ (((( I ↾ 𝐵)‘𝑥)(𝑤𝑈, 𝑧𝑈 ↦ ( I ↾ ((Base‘𝑧) ↑m (Base‘𝑤))))(( I ↾ 𝐵)‘𝑦)) ∘ (𝑥(𝑓𝐵, 𝑔𝐵 ↦ ( I ↾ (𝑓 RngHomo 𝑔)))𝑦))))
7817, 77opeq12d 4811 . . . 4 (𝜑 → ⟨𝐹, 𝐺⟩ = ⟨((𝑢𝑈 ↦ (Base‘𝑢)) ∘ ( I ↾ 𝐵)), (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑅) ↦ (((( I ↾ 𝐵)‘𝑥)(𝑤𝑈, 𝑧𝑈 ↦ ( I ↾ ((Base‘𝑧) ↑m (Base‘𝑤))))(( I ↾ 𝐵)‘𝑦)) ∘ (𝑥(𝑓𝐵, 𝑔𝐵 ↦ ( I ↾ (𝑓 RngHomo 𝑔)))𝑦)))⟩)
79 eqid 2821 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
80 eqid 2821 . . . . . 6 (ExtStrCat‘𝑈) = (ExtStrCat‘𝑈)
81 eqidd 2822 . . . . . 6 (𝜑 → ( I ↾ 𝐵) = ( I ↾ 𝐵))
82 eqidd 2822 . . . . . 6 (𝜑 → (𝑓𝐵, 𝑔𝐵 ↦ ( I ↾ (𝑓 RngHomo 𝑔))) = (𝑓𝐵, 𝑔𝐵 ↦ ( I ↾ (𝑓 RngHomo 𝑔))))
836, 80, 7, 8, 81, 82rngcifuestrc 44288 . . . . 5 (𝜑 → ( I ↾ 𝐵)(𝑅 Func (ExtStrCat‘𝑈))(𝑓𝐵, 𝑔𝐵 ↦ ( I ↾ (𝑓 RngHomo 𝑔))))
84 funcrngcsetcALT.s . . . . . 6 𝑆 = (SetCat‘𝑈)
85 eqid 2821 . . . . . 6 (Base‘(ExtStrCat‘𝑈)) = (Base‘(ExtStrCat‘𝑈))
86 eqid 2821 . . . . . 6 (Base‘𝑆) = (Base‘𝑆)
8780, 8estrcbas 17375 . . . . . . 7 (𝜑𝑈 = (Base‘(ExtStrCat‘𝑈)))
8887mpteq1d 5155 . . . . . 6 (𝜑 → (𝑢𝑈 ↦ (Base‘𝑢)) = (𝑢 ∈ (Base‘(ExtStrCat‘𝑈)) ↦ (Base‘𝑢)))
89 fveq2 6670 . . . . . . . . . . 11 (𝑤 = 𝑢 → (Base‘𝑤) = (Base‘𝑢))
9089oveq2d 7172 . . . . . . . . . 10 (𝑤 = 𝑢 → ((Base‘𝑧) ↑m (Base‘𝑤)) = ((Base‘𝑧) ↑m (Base‘𝑢)))
9190reseq2d 5853 . . . . . . . . 9 (𝑤 = 𝑢 → ( I ↾ ((Base‘𝑧) ↑m (Base‘𝑤))) = ( I ↾ ((Base‘𝑧) ↑m (Base‘𝑢))))
92 fveq2 6670 . . . . . . . . . . 11 (𝑧 = 𝑣 → (Base‘𝑧) = (Base‘𝑣))
9392oveq1d 7171 . . . . . . . . . 10 (𝑧 = 𝑣 → ((Base‘𝑧) ↑m (Base‘𝑢)) = ((Base‘𝑣) ↑m (Base‘𝑢)))
9493reseq2d 5853 . . . . . . . . 9 (𝑧 = 𝑣 → ( I ↾ ((Base‘𝑧) ↑m (Base‘𝑢))) = ( I ↾ ((Base‘𝑣) ↑m (Base‘𝑢))))
9591, 94cbvmpov 7249 . . . . . . . 8 (𝑤𝑈, 𝑧𝑈 ↦ ( I ↾ ((Base‘𝑧) ↑m (Base‘𝑤)))) = (𝑢𝑈, 𝑣𝑈 ↦ ( I ↾ ((Base‘𝑣) ↑m (Base‘𝑢))))
9695a1i 11 . . . . . . 7 (𝜑 → (𝑤𝑈, 𝑧𝑈 ↦ ( I ↾ ((Base‘𝑧) ↑m (Base‘𝑤)))) = (𝑢𝑈, 𝑣𝑈 ↦ ( I ↾ ((Base‘𝑣) ↑m (Base‘𝑢)))))
97 eqidd 2822 . . . . . . . 8 (𝜑 → ( I ↾ ((Base‘𝑣) ↑m (Base‘𝑢))) = ( I ↾ ((Base‘𝑣) ↑m (Base‘𝑢))))
9887, 87, 97mpoeq123dv 7229 . . . . . . 7 (𝜑 → (𝑢𝑈, 𝑣𝑈 ↦ ( I ↾ ((Base‘𝑣) ↑m (Base‘𝑢)))) = (𝑢 ∈ (Base‘(ExtStrCat‘𝑈)), 𝑣 ∈ (Base‘(ExtStrCat‘𝑈)) ↦ ( I ↾ ((Base‘𝑣) ↑m (Base‘𝑢)))))
9996, 98eqtrd 2856 . . . . . 6 (𝜑 → (𝑤𝑈, 𝑧𝑈 ↦ ( I ↾ ((Base‘𝑧) ↑m (Base‘𝑤)))) = (𝑢 ∈ (Base‘(ExtStrCat‘𝑈)), 𝑣 ∈ (Base‘(ExtStrCat‘𝑈)) ↦ ( I ↾ ((Base‘𝑣) ↑m (Base‘𝑢)))))
10080, 84, 85, 86, 8, 88, 99funcestrcsetc 17399 . . . . 5 (𝜑 → (𝑢𝑈 ↦ (Base‘𝑢))((ExtStrCat‘𝑈) Func 𝑆)(𝑤𝑈, 𝑧𝑈 ↦ ( I ↾ ((Base‘𝑧) ↑m (Base‘𝑤)))))
10179, 83, 100cofuval2 17157 . . . 4 (𝜑 → (⟨(𝑢𝑈 ↦ (Base‘𝑢)), (𝑤𝑈, 𝑧𝑈 ↦ ( I ↾ ((Base‘𝑧) ↑m (Base‘𝑤))))⟩ ∘func ⟨( I ↾ 𝐵), (𝑓𝐵, 𝑔𝐵 ↦ ( I ↾ (𝑓 RngHomo 𝑔)))⟩) = ⟨((𝑢𝑈 ↦ (Base‘𝑢)) ∘ ( I ↾ 𝐵)), (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑅) ↦ (((( I ↾ 𝐵)‘𝑥)(𝑤𝑈, 𝑧𝑈 ↦ ( I ↾ ((Base‘𝑧) ↑m (Base‘𝑤))))(( I ↾ 𝐵)‘𝑦)) ∘ (𝑥(𝑓𝐵, 𝑔𝐵 ↦ ( I ↾ (𝑓 RngHomo 𝑔)))𝑦)))⟩)
10278, 101eqtr4d 2859 . . 3 (𝜑 → ⟨𝐹, 𝐺⟩ = (⟨(𝑢𝑈 ↦ (Base‘𝑢)), (𝑤𝑈, 𝑧𝑈 ↦ ( I ↾ ((Base‘𝑧) ↑m (Base‘𝑤))))⟩ ∘func ⟨( I ↾ 𝐵), (𝑓𝐵, 𝑔𝐵 ↦ ( I ↾ (𝑓 RngHomo 𝑔)))⟩))
103 df-br 5067 . . . . 5 (( I ↾ 𝐵)(𝑅 Func (ExtStrCat‘𝑈))(𝑓𝐵, 𝑔𝐵 ↦ ( I ↾ (𝑓 RngHomo 𝑔))) ↔ ⟨( I ↾ 𝐵), (𝑓𝐵, 𝑔𝐵 ↦ ( I ↾ (𝑓 RngHomo 𝑔)))⟩ ∈ (𝑅 Func (ExtStrCat‘𝑈)))
10483, 103sylib 220 . . . 4 (𝜑 → ⟨( I ↾ 𝐵), (𝑓𝐵, 𝑔𝐵 ↦ ( I ↾ (𝑓 RngHomo 𝑔)))⟩ ∈ (𝑅 Func (ExtStrCat‘𝑈)))
105 df-br 5067 . . . . 5 ((𝑢𝑈 ↦ (Base‘𝑢))((ExtStrCat‘𝑈) Func 𝑆)(𝑤𝑈, 𝑧𝑈 ↦ ( I ↾ ((Base‘𝑧) ↑m (Base‘𝑤)))) ↔ ⟨(𝑢𝑈 ↦ (Base‘𝑢)), (𝑤𝑈, 𝑧𝑈 ↦ ( I ↾ ((Base‘𝑧) ↑m (Base‘𝑤))))⟩ ∈ ((ExtStrCat‘𝑈) Func 𝑆))
106100, 105sylib 220 . . . 4 (𝜑 → ⟨(𝑢𝑈 ↦ (Base‘𝑢)), (𝑤𝑈, 𝑧𝑈 ↦ ( I ↾ ((Base‘𝑧) ↑m (Base‘𝑤))))⟩ ∈ ((ExtStrCat‘𝑈) Func 𝑆))
107104, 106cofucl 17158 . . 3 (𝜑 → (⟨(𝑢𝑈 ↦ (Base‘𝑢)), (𝑤𝑈, 𝑧𝑈 ↦ ( I ↾ ((Base‘𝑧) ↑m (Base‘𝑤))))⟩ ∘func ⟨( I ↾ 𝐵), (𝑓𝐵, 𝑔𝐵 ↦ ( I ↾ (𝑓 RngHomo 𝑔)))⟩) ∈ (𝑅 Func 𝑆))
108102, 107eqeltrd 2913 . 2 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (𝑅 Func 𝑆))
109 df-br 5067 . 2 (𝐹(𝑅 Func 𝑆)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝑅 Func 𝑆))
110108, 109sylibr 236 1 (𝜑𝐹(𝑅 Func 𝑆)𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  Vcvv 3494  cin 3935  cop 4573   class class class wbr 5066  cmpt 5146   I cid 5459  cres 5557  ccom 5559  wf 6351  cfv 6355  (class class class)co 7156  cmpo 7158  m cmap 8406  WUnicwun 10122  Basecbs 16483   Func cfunc 17124  func ccofu 17126  SetCatcsetc 17335  ExtStrCatcestrc 17372  Rngcrng 44165   RngHomo crngh 44176  RngCatcrngc 44248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-wun 10124  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-fz 12894  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-hom 16589  df-cco 16590  df-0g 16715  df-cat 16939  df-cid 16940  df-homf 16941  df-ssc 17080  df-resc 17081  df-subc 17082  df-func 17128  df-idfu 17129  df-cofu 17130  df-full 17174  df-fth 17175  df-setc 17336  df-estrc 17373  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-mhm 17956  df-grp 18106  df-ghm 18356  df-abl 18909  df-mgp 19240  df-mgmhm 44066  df-rng0 44166  df-rnghomo 44178  df-rngc 44250
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator