Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funcringcsetclem8ALTV Structured version   Visualization version   GIF version

Theorem funcringcsetclem8ALTV 44386
Description: Lemma 8 for funcringcsetcALTV 44388. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
funcringcsetcALTV.r 𝑅 = (RingCatALTV‘𝑈)
funcringcsetcALTV.s 𝑆 = (SetCat‘𝑈)
funcringcsetcALTV.b 𝐵 = (Base‘𝑅)
funcringcsetcALTV.c 𝐶 = (Base‘𝑆)
funcringcsetcALTV.u (𝜑𝑈 ∈ WUni)
funcringcsetcALTV.f (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
funcringcsetcALTV.g (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦))))
Assertion
Ref Expression
funcringcsetclem8ALTV ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋𝐺𝑌):(𝑋(Hom ‘𝑅)𝑌)⟶((𝐹𝑋)(Hom ‘𝑆)(𝐹𝑌)))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑋   𝜑,𝑥   𝑥,𝐶   𝑦,𝐵,𝑥   𝑦,𝑋   𝑥,𝑌,𝑦   𝜑,𝑦
Allowed substitution hints:   𝐶(𝑦)   𝑅(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem funcringcsetclem8ALTV
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 f1oi 6652 . . . 4 ( I ↾ (𝑋 RingHom 𝑌)):(𝑋 RingHom 𝑌)–1-1-onto→(𝑋 RingHom 𝑌)
2 f1of 6615 . . . 4 (( I ↾ (𝑋 RingHom 𝑌)):(𝑋 RingHom 𝑌)–1-1-onto→(𝑋 RingHom 𝑌) → ( I ↾ (𝑋 RingHom 𝑌)):(𝑋 RingHom 𝑌)⟶(𝑋 RingHom 𝑌))
31, 2mp1i 13 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → ( I ↾ (𝑋 RingHom 𝑌)):(𝑋 RingHom 𝑌)⟶(𝑋 RingHom 𝑌))
4 eqid 2821 . . . . . 6 (Base‘𝑋) = (Base‘𝑋)
5 eqid 2821 . . . . . 6 (Base‘𝑌) = (Base‘𝑌)
64, 5rhmf 19478 . . . . 5 (𝑓 ∈ (𝑋 RingHom 𝑌) → 𝑓:(Base‘𝑋)⟶(Base‘𝑌))
7 fvex 6683 . . . . . . . . . 10 (Base‘𝑌) ∈ V
8 fvex 6683 . . . . . . . . . 10 (Base‘𝑋) ∈ V
97, 8pm3.2i 473 . . . . . . . . 9 ((Base‘𝑌) ∈ V ∧ (Base‘𝑋) ∈ V)
10 elmapg 8419 . . . . . . . . . 10 (((Base‘𝑌) ∈ V ∧ (Base‘𝑋) ∈ V) → (𝑓 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ↔ 𝑓:(Base‘𝑋)⟶(Base‘𝑌)))
1110bicomd 225 . . . . . . . . 9 (((Base‘𝑌) ∈ V ∧ (Base‘𝑋) ∈ V) → (𝑓:(Base‘𝑋)⟶(Base‘𝑌) ↔ 𝑓 ∈ ((Base‘𝑌) ↑m (Base‘𝑋))))
129, 11mp1i 13 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑓:(Base‘𝑋)⟶(Base‘𝑌) ↔ 𝑓 ∈ ((Base‘𝑌) ↑m (Base‘𝑋))))
1312biimpa 479 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑓:(Base‘𝑋)⟶(Base‘𝑌)) → 𝑓 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)))
14 simpr 487 . . . . . . . . . 10 ((𝑋𝐵𝑌𝐵) → 𝑌𝐵)
15 funcringcsetcALTV.r . . . . . . . . . . 11 𝑅 = (RingCatALTV‘𝑈)
16 funcringcsetcALTV.s . . . . . . . . . . 11 𝑆 = (SetCat‘𝑈)
17 funcringcsetcALTV.b . . . . . . . . . . 11 𝐵 = (Base‘𝑅)
18 funcringcsetcALTV.c . . . . . . . . . . 11 𝐶 = (Base‘𝑆)
19 funcringcsetcALTV.u . . . . . . . . . . 11 (𝜑𝑈 ∈ WUni)
20 funcringcsetcALTV.f . . . . . . . . . . 11 (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
2115, 16, 17, 18, 19, 20funcringcsetclem1ALTV 44379 . . . . . . . . . 10 ((𝜑𝑌𝐵) → (𝐹𝑌) = (Base‘𝑌))
2214, 21sylan2 594 . . . . . . . . 9 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝐹𝑌) = (Base‘𝑌))
23 simpl 485 . . . . . . . . . 10 ((𝑋𝐵𝑌𝐵) → 𝑋𝐵)
2415, 16, 17, 18, 19, 20funcringcsetclem1ALTV 44379 . . . . . . . . . 10 ((𝜑𝑋𝐵) → (𝐹𝑋) = (Base‘𝑋))
2523, 24sylan2 594 . . . . . . . . 9 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝐹𝑋) = (Base‘𝑋))
2622, 25oveq12d 7174 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → ((𝐹𝑌) ↑m (𝐹𝑋)) = ((Base‘𝑌) ↑m (Base‘𝑋)))
2726adantr 483 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑓:(Base‘𝑋)⟶(Base‘𝑌)) → ((𝐹𝑌) ↑m (𝐹𝑋)) = ((Base‘𝑌) ↑m (Base‘𝑋)))
2813, 27eleqtrrd 2916 . . . . . 6 (((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑓:(Base‘𝑋)⟶(Base‘𝑌)) → 𝑓 ∈ ((𝐹𝑌) ↑m (𝐹𝑋)))
2928ex 415 . . . . 5 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑓:(Base‘𝑋)⟶(Base‘𝑌) → 𝑓 ∈ ((𝐹𝑌) ↑m (𝐹𝑋))))
306, 29syl5 34 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑓 ∈ (𝑋 RingHom 𝑌) → 𝑓 ∈ ((𝐹𝑌) ↑m (𝐹𝑋))))
3130ssrdv 3973 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋 RingHom 𝑌) ⊆ ((𝐹𝑌) ↑m (𝐹𝑋)))
323, 31fssd 6528 . 2 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → ( I ↾ (𝑋 RingHom 𝑌)):(𝑋 RingHom 𝑌)⟶((𝐹𝑌) ↑m (𝐹𝑋)))
33 funcringcsetcALTV.g . . . 4 (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦))))
3415, 16, 17, 18, 19, 20, 33funcringcsetclem5ALTV 44383 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋𝐺𝑌) = ( I ↾ (𝑋 RingHom 𝑌)))
3519adantr 483 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝑈 ∈ WUni)
36 eqid 2821 . . . 4 (Hom ‘𝑅) = (Hom ‘𝑅)
3723adantl 484 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝑋𝐵)
3814adantl 484 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝑌𝐵)
3915, 17, 35, 36, 37, 38ringchomALTV 44368 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋(Hom ‘𝑅)𝑌) = (𝑋 RingHom 𝑌))
40 eqid 2821 . . . 4 (Hom ‘𝑆) = (Hom ‘𝑆)
4115, 16, 17, 18, 19, 20funcringcsetclem2ALTV 44380 . . . . 5 ((𝜑𝑋𝐵) → (𝐹𝑋) ∈ 𝑈)
4223, 41sylan2 594 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝐹𝑋) ∈ 𝑈)
4315, 16, 17, 18, 19, 20funcringcsetclem2ALTV 44380 . . . . 5 ((𝜑𝑌𝐵) → (𝐹𝑌) ∈ 𝑈)
4414, 43sylan2 594 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝐹𝑌) ∈ 𝑈)
4516, 35, 40, 42, 44setchom 17340 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → ((𝐹𝑋)(Hom ‘𝑆)(𝐹𝑌)) = ((𝐹𝑌) ↑m (𝐹𝑋)))
4634, 39, 45feq123d 6503 . 2 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → ((𝑋𝐺𝑌):(𝑋(Hom ‘𝑅)𝑌)⟶((𝐹𝑋)(Hom ‘𝑆)(𝐹𝑌)) ↔ ( I ↾ (𝑋 RingHom 𝑌)):(𝑋 RingHom 𝑌)⟶((𝐹𝑌) ↑m (𝐹𝑋))))
4732, 46mpbird 259 1 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋𝐺𝑌):(𝑋(Hom ‘𝑅)𝑌)⟶((𝐹𝑋)(Hom ‘𝑆)(𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  Vcvv 3494  cmpt 5146   I cid 5459  cres 5557  wf 6351  1-1-ontowf1o 6354  cfv 6355  (class class class)co 7156  cmpo 7158  m cmap 8406  WUnicwun 10122  Basecbs 16483  Hom chom 16576  SetCatcsetc 17335   RingHom crh 19464  RingCatALTVcringcALTV 44324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-wun 10124  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-fz 12894  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-plusg 16578  df-hom 16589  df-cco 16590  df-0g 16715  df-setc 17336  df-mhm 17956  df-ghm 18356  df-mgp 19240  df-ur 19252  df-ring 19299  df-rnghom 19467  df-ringcALTV 44326
This theorem is referenced by:  funcringcsetcALTV  44388
  Copyright terms: Public domain W3C validator