Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funcringcsetclem9ALTV Structured version   Visualization version   GIF version

Theorem funcringcsetclem9ALTV 44358
Description: Lemma 9 for funcringcsetcALTV 44359. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
funcringcsetcALTV.r 𝑅 = (RingCatALTV‘𝑈)
funcringcsetcALTV.s 𝑆 = (SetCat‘𝑈)
funcringcsetcALTV.b 𝐵 = (Base‘𝑅)
funcringcsetcALTV.c 𝐶 = (Base‘𝑆)
funcringcsetcALTV.u (𝜑𝑈 ∈ WUni)
funcringcsetcALTV.f (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
funcringcsetcALTV.g (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦))))
Assertion
Ref Expression
funcringcsetclem9ALTV ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝐻 ∈ (𝑋(Hom ‘𝑅)𝑌) ∧ 𝐾 ∈ (𝑌(Hom ‘𝑅)𝑍))) → ((𝑋𝐺𝑍)‘(𝐾(⟨𝑋, 𝑌⟩(comp‘𝑅)𝑍)𝐻)) = (((𝑌𝐺𝑍)‘𝐾)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝑆)(𝐹𝑍))((𝑋𝐺𝑌)‘𝐻)))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑋   𝜑,𝑥   𝑥,𝐶   𝑦,𝐵,𝑥   𝑦,𝑋   𝑥,𝑌,𝑦   𝜑,𝑦   𝑥,𝑍,𝑦
Allowed substitution hints:   𝐶(𝑦)   𝑅(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝐻(𝑥,𝑦)   𝐾(𝑥,𝑦)

Proof of Theorem funcringcsetclem9ALTV
StepHypRef Expression
1 funcringcsetcALTV.r . . . . . 6 𝑅 = (RingCatALTV‘𝑈)
2 funcringcsetcALTV.b . . . . . 6 𝐵 = (Base‘𝑅)
3 funcringcsetcALTV.u . . . . . . 7 (𝜑𝑈 ∈ WUni)
43adantr 483 . . . . . 6 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑈 ∈ WUni)
5 eqid 2821 . . . . . 6 (Hom ‘𝑅) = (Hom ‘𝑅)
6 simpr1 1190 . . . . . 6 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋𝐵)
7 simpr2 1191 . . . . . 6 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌𝐵)
81, 2, 4, 5, 6, 7ringchomALTV 44339 . . . . 5 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋(Hom ‘𝑅)𝑌) = (𝑋 RingHom 𝑌))
98eleq2d 2898 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝐻 ∈ (𝑋(Hom ‘𝑅)𝑌) ↔ 𝐻 ∈ (𝑋 RingHom 𝑌)))
10 simpr3 1192 . . . . . 6 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍𝐵)
111, 2, 4, 5, 7, 10ringchomALTV 44339 . . . . 5 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑌(Hom ‘𝑅)𝑍) = (𝑌 RingHom 𝑍))
1211eleq2d 2898 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝐾 ∈ (𝑌(Hom ‘𝑅)𝑍) ↔ 𝐾 ∈ (𝑌 RingHom 𝑍)))
139, 12anbi12d 632 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝐻 ∈ (𝑋(Hom ‘𝑅)𝑌) ∧ 𝐾 ∈ (𝑌(Hom ‘𝑅)𝑍)) ↔ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))))
14 rhmco 19489 . . . . . . . 8 ((𝐾 ∈ (𝑌 RingHom 𝑍) ∧ 𝐻 ∈ (𝑋 RingHom 𝑌)) → (𝐾𝐻) ∈ (𝑋 RingHom 𝑍))
1514ancoms 461 . . . . . . 7 ((𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍)) → (𝐾𝐻) ∈ (𝑋 RingHom 𝑍))
1615adantl 484 . . . . . 6 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → (𝐾𝐻) ∈ (𝑋 RingHom 𝑍))
17 fvresi 6935 . . . . . 6 ((𝐾𝐻) ∈ (𝑋 RingHom 𝑍) → (( I ↾ (𝑋 RingHom 𝑍))‘(𝐾𝐻)) = (𝐾𝐻))
1816, 17syl 17 . . . . 5 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → (( I ↾ (𝑋 RingHom 𝑍))‘(𝐾𝐻)) = (𝐾𝐻))
19 funcringcsetcALTV.s . . . . . . . . 9 𝑆 = (SetCat‘𝑈)
20 funcringcsetcALTV.c . . . . . . . . 9 𝐶 = (Base‘𝑆)
21 funcringcsetcALTV.f . . . . . . . . 9 (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
22 funcringcsetcALTV.g . . . . . . . . 9 (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦))))
231, 19, 2, 20, 3, 21, 22funcringcsetclem5ALTV 44354 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐵𝑍𝐵)) → (𝑋𝐺𝑍) = ( I ↾ (𝑋 RingHom 𝑍)))
24233adantr2 1166 . . . . . . 7 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋𝐺𝑍) = ( I ↾ (𝑋 RingHom 𝑍)))
2524adantr 483 . . . . . 6 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → (𝑋𝐺𝑍) = ( I ↾ (𝑋 RingHom 𝑍)))
264adantr 483 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → 𝑈 ∈ WUni)
27 eqid 2821 . . . . . . 7 (comp‘𝑅) = (comp‘𝑅)
286adantr 483 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → 𝑋𝐵)
297adantr 483 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → 𝑌𝐵)
3010adantr 483 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → 𝑍𝐵)
31 simprl 769 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → 𝐻 ∈ (𝑋 RingHom 𝑌))
32 simprr 771 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → 𝐾 ∈ (𝑌 RingHom 𝑍))
331, 2, 26, 27, 28, 29, 30, 31, 32ringccoALTV 44342 . . . . . 6 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → (𝐾(⟨𝑋, 𝑌⟩(comp‘𝑅)𝑍)𝐻) = (𝐾𝐻))
3425, 33fveq12d 6677 . . . . 5 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → ((𝑋𝐺𝑍)‘(𝐾(⟨𝑋, 𝑌⟩(comp‘𝑅)𝑍)𝐻)) = (( I ↾ (𝑋 RingHom 𝑍))‘(𝐾𝐻)))
35 eqid 2821 . . . . . . 7 (comp‘𝑆) = (comp‘𝑆)
361, 19, 2, 20, 3, 21funcringcsetclem2ALTV 44351 . . . . . . . . 9 ((𝜑𝑋𝐵) → (𝐹𝑋) ∈ 𝑈)
37363ad2antr1 1184 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝐹𝑋) ∈ 𝑈)
3837adantr 483 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → (𝐹𝑋) ∈ 𝑈)
391, 19, 2, 20, 3, 21funcringcsetclem2ALTV 44351 . . . . . . . . 9 ((𝜑𝑌𝐵) → (𝐹𝑌) ∈ 𝑈)
40393ad2antr2 1185 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝐹𝑌) ∈ 𝑈)
4140adantr 483 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → (𝐹𝑌) ∈ 𝑈)
421, 19, 2, 20, 3, 21funcringcsetclem2ALTV 44351 . . . . . . . . 9 ((𝜑𝑍𝐵) → (𝐹𝑍) ∈ 𝑈)
43423ad2antr3 1186 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝐹𝑍) ∈ 𝑈)
4443adantr 483 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → (𝐹𝑍) ∈ 𝑈)
45 eqid 2821 . . . . . . . . . . 11 (Base‘𝑋) = (Base‘𝑋)
46 eqid 2821 . . . . . . . . . . 11 (Base‘𝑌) = (Base‘𝑌)
4745, 46rhmf 19478 . . . . . . . . . 10 (𝐻 ∈ (𝑋 RingHom 𝑌) → 𝐻:(Base‘𝑋)⟶(Base‘𝑌))
4847ad2antrl 726 . . . . . . . . 9 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → 𝐻:(Base‘𝑋)⟶(Base‘𝑌))
491, 19, 2, 20, 3, 21funcringcsetclem1ALTV 44350 . . . . . . . . . . . 12 ((𝜑𝑋𝐵) → (𝐹𝑋) = (Base‘𝑋))
50493ad2antr1 1184 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝐹𝑋) = (Base‘𝑋))
511, 19, 2, 20, 3, 21funcringcsetclem1ALTV 44350 . . . . . . . . . . . 12 ((𝜑𝑌𝐵) → (𝐹𝑌) = (Base‘𝑌))
52513ad2antr2 1185 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝐹𝑌) = (Base‘𝑌))
5350, 52feq23d 6509 . . . . . . . . . 10 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝐻:(𝐹𝑋)⟶(𝐹𝑌) ↔ 𝐻:(Base‘𝑋)⟶(Base‘𝑌)))
5453adantr 483 . . . . . . . . 9 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → (𝐻:(𝐹𝑋)⟶(𝐹𝑌) ↔ 𝐻:(Base‘𝑋)⟶(Base‘𝑌)))
5548, 54mpbird 259 . . . . . . . 8 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → 𝐻:(𝐹𝑋)⟶(𝐹𝑌))
56 simpll 765 . . . . . . . . . 10 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → 𝜑)
57 3simpa 1144 . . . . . . . . . . 11 ((𝑋𝐵𝑌𝐵𝑍𝐵) → (𝑋𝐵𝑌𝐵))
5857ad2antlr 725 . . . . . . . . . 10 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → (𝑋𝐵𝑌𝐵))
591, 19, 2, 20, 3, 21, 22funcringcsetclem6ALTV 44355 . . . . . . . . . 10 ((𝜑 ∧ (𝑋𝐵𝑌𝐵) ∧ 𝐻 ∈ (𝑋 RingHom 𝑌)) → ((𝑋𝐺𝑌)‘𝐻) = 𝐻)
6056, 58, 31, 59syl3anc 1367 . . . . . . . . 9 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → ((𝑋𝐺𝑌)‘𝐻) = 𝐻)
6160feq1d 6499 . . . . . . . 8 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → (((𝑋𝐺𝑌)‘𝐻):(𝐹𝑋)⟶(𝐹𝑌) ↔ 𝐻:(𝐹𝑋)⟶(𝐹𝑌)))
6255, 61mpbird 259 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → ((𝑋𝐺𝑌)‘𝐻):(𝐹𝑋)⟶(𝐹𝑌))
63 eqid 2821 . . . . . . . . . . 11 (Base‘𝑍) = (Base‘𝑍)
6446, 63rhmf 19478 . . . . . . . . . 10 (𝐾 ∈ (𝑌 RingHom 𝑍) → 𝐾:(Base‘𝑌)⟶(Base‘𝑍))
6564ad2antll 727 . . . . . . . . 9 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → 𝐾:(Base‘𝑌)⟶(Base‘𝑍))
661, 19, 2, 20, 3, 21funcringcsetclem1ALTV 44350 . . . . . . . . . . . 12 ((𝜑𝑍𝐵) → (𝐹𝑍) = (Base‘𝑍))
67663ad2antr3 1186 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝐹𝑍) = (Base‘𝑍))
6852, 67feq23d 6509 . . . . . . . . . 10 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝐾:(𝐹𝑌)⟶(𝐹𝑍) ↔ 𝐾:(Base‘𝑌)⟶(Base‘𝑍)))
6968adantr 483 . . . . . . . . 9 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → (𝐾:(𝐹𝑌)⟶(𝐹𝑍) ↔ 𝐾:(Base‘𝑌)⟶(Base‘𝑍)))
7065, 69mpbird 259 . . . . . . . 8 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → 𝐾:(𝐹𝑌)⟶(𝐹𝑍))
71 3simpc 1146 . . . . . . . . . . 11 ((𝑋𝐵𝑌𝐵𝑍𝐵) → (𝑌𝐵𝑍𝐵))
7271ad2antlr 725 . . . . . . . . . 10 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → (𝑌𝐵𝑍𝐵))
731, 19, 2, 20, 3, 21, 22funcringcsetclem6ALTV 44355 . . . . . . . . . 10 ((𝜑 ∧ (𝑌𝐵𝑍𝐵) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍)) → ((𝑌𝐺𝑍)‘𝐾) = 𝐾)
7456, 72, 32, 73syl3anc 1367 . . . . . . . . 9 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → ((𝑌𝐺𝑍)‘𝐾) = 𝐾)
7574feq1d 6499 . . . . . . . 8 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → (((𝑌𝐺𝑍)‘𝐾):(𝐹𝑌)⟶(𝐹𝑍) ↔ 𝐾:(𝐹𝑌)⟶(𝐹𝑍)))
7670, 75mpbird 259 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → ((𝑌𝐺𝑍)‘𝐾):(𝐹𝑌)⟶(𝐹𝑍))
7719, 26, 35, 38, 41, 44, 62, 76setcco 17343 . . . . . 6 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → (((𝑌𝐺𝑍)‘𝐾)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝑆)(𝐹𝑍))((𝑋𝐺𝑌)‘𝐻)) = (((𝑌𝐺𝑍)‘𝐾) ∘ ((𝑋𝐺𝑌)‘𝐻)))
7874, 60coeq12d 5735 . . . . . 6 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → (((𝑌𝐺𝑍)‘𝐾) ∘ ((𝑋𝐺𝑌)‘𝐻)) = (𝐾𝐻))
7977, 78eqtrd 2856 . . . . 5 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → (((𝑌𝐺𝑍)‘𝐾)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝑆)(𝐹𝑍))((𝑋𝐺𝑌)‘𝐻)) = (𝐾𝐻))
8018, 34, 793eqtr4d 2866 . . . 4 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → ((𝑋𝐺𝑍)‘(𝐾(⟨𝑋, 𝑌⟩(comp‘𝑅)𝑍)𝐻)) = (((𝑌𝐺𝑍)‘𝐾)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝑆)(𝐹𝑍))((𝑋𝐺𝑌)‘𝐻)))
8180ex 415 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍)) → ((𝑋𝐺𝑍)‘(𝐾(⟨𝑋, 𝑌⟩(comp‘𝑅)𝑍)𝐻)) = (((𝑌𝐺𝑍)‘𝐾)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝑆)(𝐹𝑍))((𝑋𝐺𝑌)‘𝐻))))
8213, 81sylbid 242 . 2 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝐻 ∈ (𝑋(Hom ‘𝑅)𝑌) ∧ 𝐾 ∈ (𝑌(Hom ‘𝑅)𝑍)) → ((𝑋𝐺𝑍)‘(𝐾(⟨𝑋, 𝑌⟩(comp‘𝑅)𝑍)𝐻)) = (((𝑌𝐺𝑍)‘𝐾)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝑆)(𝐹𝑍))((𝑋𝐺𝑌)‘𝐻))))
83823impia 1113 1 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝐻 ∈ (𝑋(Hom ‘𝑅)𝑌) ∧ 𝐾 ∈ (𝑌(Hom ‘𝑅)𝑍))) → ((𝑋𝐺𝑍)‘(𝐾(⟨𝑋, 𝑌⟩(comp‘𝑅)𝑍)𝐻)) = (((𝑌𝐺𝑍)‘𝐾)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝑆)(𝐹𝑍))((𝑋𝐺𝑌)‘𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  cop 4573  cmpt 5146   I cid 5459  cres 5557  ccom 5559  wf 6351  cfv 6355  (class class class)co 7156  cmpo 7158  WUnicwun 10122  Basecbs 16483  Hom chom 16576  compcco 16577  SetCatcsetc 17335   RingHom crh 19464  RingCatALTVcringcALTV 44295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-wun 10124  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-fz 12894  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-plusg 16578  df-hom 16589  df-cco 16590  df-0g 16715  df-setc 17336  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-mhm 17956  df-grp 18106  df-ghm 18356  df-mgp 19240  df-ur 19252  df-ring 19299  df-rnghom 19467  df-ringcALTV 44297
This theorem is referenced by:  funcringcsetcALTV  44359
  Copyright terms: Public domain W3C validator