MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzn Structured version   Visualization version   GIF version

Theorem fzn 12299
Description: A finite set of sequential integers is empty if the bounds are reversed. (Contributed by NM, 22-Aug-2005.)
Assertion
Ref Expression
fzn ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝑀 ↔ (𝑀...𝑁) = ∅))

Proof of Theorem fzn
StepHypRef Expression
1 fzn0 12297 . . . 4 ((𝑀...𝑁) ≠ ∅ ↔ 𝑁 ∈ (ℤ𝑀))
2 eluz 11645 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ𝑀) ↔ 𝑀𝑁))
31, 2syl5bb 272 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀...𝑁) ≠ ∅ ↔ 𝑀𝑁))
4 zre 11325 . . . 4 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
5 zre 11325 . . . 4 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
6 lenlt 10060 . . . 4 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀𝑁 ↔ ¬ 𝑁 < 𝑀))
74, 5, 6syl2an 494 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ ¬ 𝑁 < 𝑀))
83, 7bitr2d 269 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ 𝑁 < 𝑀 ↔ (𝑀...𝑁) ≠ ∅))
98necon4bbid 2831 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝑀 ↔ (𝑀...𝑁) = ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wne 2790  c0 3891   class class class wbr 4613  cfv 5847  (class class class)co 6604  cr 9879   < clt 10018  cle 10019  cz 11321  cuz 11631  ...cfz 12268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-pre-lttri 9954  ax-pre-lttrn 9955
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-1st 7113  df-2nd 7114  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-neg 10213  df-z 11322  df-uz 11632  df-fz 12269
This theorem is referenced by:  fz1n  12301  fz10  12304  fzsuc2  12340  fzm1  12361  fzon  12430  hashfzp1  13158  isumsplit  14497  arisum2  14518  risefall0lem  14682  prmreclem4  15547  prmreclem5  15548  vdwap0  15604  abelthlem6  24094  ppi1  24790  cht1  24791  ppiublem2  24828  lgsdir2lem3  24952  wlkv0  26416  fz0n  31324  poimirlem10  33051  poimirlem23  33064  poimirlem28  33069  fdc  33173  mettrifi  33185  fzisoeu  38978  fzdifsuc2  38989
  Copyright terms: Public domain W3C validator