MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsdir2lem3 Structured version   Visualization version   GIF version

Theorem lgsdir2lem3 25903
Description: Lemma for lgsdir2 25906. (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
lgsdir2lem3 ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → (𝐴 mod 8) ∈ ({1, 7} ∪ {3, 5}))

Proof of Theorem lgsdir2lem3
StepHypRef Expression
1 simpl 485 . . . 4 ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → 𝐴 ∈ ℤ)
2 8nn 11733 . . . 4 8 ∈ ℕ
3 zmodfz 13262 . . . 4 ((𝐴 ∈ ℤ ∧ 8 ∈ ℕ) → (𝐴 mod 8) ∈ (0...(8 − 1)))
41, 2, 3sylancl 588 . . 3 ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → (𝐴 mod 8) ∈ (0...(8 − 1)))
5 8m1e7 11771 . . . 4 (8 − 1) = 7
65oveq2i 7167 . . 3 (0...(8 − 1)) = (0...7)
74, 6eleqtrdi 2923 . 2 ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → (𝐴 mod 8) ∈ (0...7))
8 neg1z 12019 . . . . . . . 8 -1 ∈ ℤ
9 z0even 15716 . . . . . . . . 9 2 ∥ 0
10 1pneg1e0 11757 . . . . . . . . . 10 (1 + -1) = 0
11 ax-1cn 10595 . . . . . . . . . . 11 1 ∈ ℂ
12 neg1cn 11752 . . . . . . . . . . 11 -1 ∈ ℂ
1311, 12addcomi 10831 . . . . . . . . . 10 (1 + -1) = (-1 + 1)
1410, 13eqtr3i 2846 . . . . . . . . 9 0 = (-1 + 1)
159, 14breqtri 5091 . . . . . . . 8 2 ∥ (-1 + 1)
16 noel 4296 . . . . . . . . . . 11 ¬ (𝐴 mod 8) ∈ ∅
1716pm2.21i 119 . . . . . . . . . 10 ((𝐴 mod 8) ∈ ∅ → (𝐴 mod 8) ∈ ({1, 7} ∪ {3, 5}))
18 neg1lt0 11755 . . . . . . . . . . 11 -1 < 0
19 0z 11993 . . . . . . . . . . . 12 0 ∈ ℤ
20 fzn 12924 . . . . . . . . . . . 12 ((0 ∈ ℤ ∧ -1 ∈ ℤ) → (-1 < 0 ↔ (0...-1) = ∅))
2119, 8, 20mp2an 690 . . . . . . . . . . 11 (-1 < 0 ↔ (0...-1) = ∅)
2218, 21mpbi 232 . . . . . . . . . 10 (0...-1) = ∅
2317, 22eleq2s 2931 . . . . . . . . 9 ((𝐴 mod 8) ∈ (0...-1) → (𝐴 mod 8) ∈ ({1, 7} ∪ {3, 5}))
2423a1i 11 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...-1) → (𝐴 mod 8) ∈ ({1, 7} ∪ {3, 5})))
258, 15, 243pm3.2i 1335 . . . . . . 7 (-1 ∈ ℤ ∧ 2 ∥ (-1 + 1) ∧ ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...-1) → (𝐴 mod 8) ∈ ({1, 7} ∪ {3, 5}))))
26 1e0p1 12141 . . . . . . 7 1 = (0 + 1)
27 ssun1 4148 . . . . . . . 8 {1, 7} ⊆ ({1, 7} ∪ {3, 5})
28 1ex 10637 . . . . . . . . 9 1 ∈ V
2928prid1 4698 . . . . . . . 8 1 ∈ {1, 7}
3027, 29sselii 3964 . . . . . . 7 1 ∈ ({1, 7} ∪ {3, 5})
3125, 14, 26, 30lgsdir2lem2 25902 . . . . . 6 (1 ∈ ℤ ∧ 2 ∥ (1 + 1) ∧ ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...1) → (𝐴 mod 8) ∈ ({1, 7} ∪ {3, 5}))))
32 df-2 11701 . . . . . 6 2 = (1 + 1)
33 df-3 11702 . . . . . 6 3 = (2 + 1)
34 ssun2 4149 . . . . . . 7 {3, 5} ⊆ ({1, 7} ∪ {3, 5})
35 3ex 11720 . . . . . . . 8 3 ∈ V
3635prid1 4698 . . . . . . 7 3 ∈ {3, 5}
3734, 36sselii 3964 . . . . . 6 3 ∈ ({1, 7} ∪ {3, 5})
3831, 32, 33, 37lgsdir2lem2 25902 . . . . 5 (3 ∈ ℤ ∧ 2 ∥ (3 + 1) ∧ ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...3) → (𝐴 mod 8) ∈ ({1, 7} ∪ {3, 5}))))
39 df-4 11703 . . . . 5 4 = (3 + 1)
40 df-5 11704 . . . . 5 5 = (4 + 1)
41 5nn 11724 . . . . . . . 8 5 ∈ ℕ
4241elexi 3513 . . . . . . 7 5 ∈ V
4342prid2 4699 . . . . . 6 5 ∈ {3, 5}
4434, 43sselii 3964 . . . . 5 5 ∈ ({1, 7} ∪ {3, 5})
4538, 39, 40, 44lgsdir2lem2 25902 . . . 4 (5 ∈ ℤ ∧ 2 ∥ (5 + 1) ∧ ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...5) → (𝐴 mod 8) ∈ ({1, 7} ∪ {3, 5}))))
46 df-6 11705 . . . 4 6 = (5 + 1)
47 df-7 11706 . . . 4 7 = (6 + 1)
48 7nn 11730 . . . . . . 7 7 ∈ ℕ
4948elexi 3513 . . . . . 6 7 ∈ V
5049prid2 4699 . . . . 5 7 ∈ {1, 7}
5127, 50sselii 3964 . . . 4 7 ∈ ({1, 7} ∪ {3, 5})
5245, 46, 47, 51lgsdir2lem2 25902 . . 3 (7 ∈ ℤ ∧ 2 ∥ (7 + 1) ∧ ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...7) → (𝐴 mod 8) ∈ ({1, 7} ∪ {3, 5}))))
5352simp3i 1137 . 2 ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...7) → (𝐴 mod 8) ∈ ({1, 7} ∪ {3, 5})))
547, 53mpd 15 1 ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → (𝐴 mod 8) ∈ ({1, 7} ∪ {3, 5}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  cun 3934  c0 4291  {cpr 4569   class class class wbr 5066  (class class class)co 7156  0cc0 10537  1c1 10538   + caddc 10540   < clt 10675  cmin 10870  -cneg 10871  cn 11638  2c2 11693  3c3 11694  4c4 11695  5c5 11696  6c6 11697  7c7 11698  8c8 11699  cz 11982  ...cfz 12893   mod cmo 13238  cdvds 15607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-sup 8906  df-inf 8907  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-fz 12894  df-fl 13163  df-mod 13239  df-dvds 15608
This theorem is referenced by:  lgsdir2  25906  2lgslem3  25980  2lgsoddprmlem3  25990
  Copyright terms: Public domain W3C validator