![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > his35 | Structured version Visualization version GIF version |
Description: Move scalar multiplication to outside of inner product. (Contributed by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
his35 | ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 ·ℎ 𝐶) ·ih (𝐵 ·ℎ 𝐷)) = ((𝐴 · (∗‘𝐵)) · (𝐶 ·ih 𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | his5 28071 | . . . . 5 ⊢ ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ) → (𝐶 ·ih (𝐵 ·ℎ 𝐷)) = ((∗‘𝐵) · (𝐶 ·ih 𝐷))) | |
2 | 1 | 3expb 1285 | . . . 4 ⊢ ((𝐵 ∈ ℂ ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (𝐶 ·ih (𝐵 ·ℎ 𝐷)) = ((∗‘𝐵) · (𝐶 ·ih 𝐷))) |
3 | 2 | adantll 750 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (𝐶 ·ih (𝐵 ·ℎ 𝐷)) = ((∗‘𝐵) · (𝐶 ·ih 𝐷))) |
4 | 3 | oveq2d 6706 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (𝐴 · (𝐶 ·ih (𝐵 ·ℎ 𝐷))) = (𝐴 · ((∗‘𝐵) · (𝐶 ·ih 𝐷)))) |
5 | simpll 805 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → 𝐴 ∈ ℂ) | |
6 | simprl 809 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → 𝐶 ∈ ℋ) | |
7 | hvmulcl 27998 | . . . 4 ⊢ ((𝐵 ∈ ℂ ∧ 𝐷 ∈ ℋ) → (𝐵 ·ℎ 𝐷) ∈ ℋ) | |
8 | 7 | ad2ant2l 797 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (𝐵 ·ℎ 𝐷) ∈ ℋ) |
9 | ax-his3 28069 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℋ ∧ (𝐵 ·ℎ 𝐷) ∈ ℋ) → ((𝐴 ·ℎ 𝐶) ·ih (𝐵 ·ℎ 𝐷)) = (𝐴 · (𝐶 ·ih (𝐵 ·ℎ 𝐷)))) | |
10 | 5, 6, 8, 9 | syl3anc 1366 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 ·ℎ 𝐶) ·ih (𝐵 ·ℎ 𝐷)) = (𝐴 · (𝐶 ·ih (𝐵 ·ℎ 𝐷)))) |
11 | cjcl 13889 | . . . 4 ⊢ (𝐵 ∈ ℂ → (∗‘𝐵) ∈ ℂ) | |
12 | 11 | ad2antlr 763 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (∗‘𝐵) ∈ ℂ) |
13 | hicl 28065 | . . . 4 ⊢ ((𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ) → (𝐶 ·ih 𝐷) ∈ ℂ) | |
14 | 13 | adantl 481 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (𝐶 ·ih 𝐷) ∈ ℂ) |
15 | 5, 12, 14 | mulassd 10101 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 · (∗‘𝐵)) · (𝐶 ·ih 𝐷)) = (𝐴 · ((∗‘𝐵) · (𝐶 ·ih 𝐷)))) |
16 | 4, 10, 15 | 3eqtr4d 2695 | 1 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 ·ℎ 𝐶) ·ih (𝐵 ·ℎ 𝐷)) = ((𝐴 · (∗‘𝐵)) · (𝐶 ·ih 𝐷))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ‘cfv 5926 (class class class)co 6690 ℂcc 9972 · cmul 9979 ∗ccj 13880 ℋchil 27904 ·ℎ csm 27906 ·ih csp 27907 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 ax-hfvmul 27990 ax-hfi 28064 ax-his1 28067 ax-his3 28069 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-po 5064 df-so 5065 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-div 10723 df-2 11117 df-cj 13883 df-re 13884 df-im 13885 |
This theorem is referenced by: his35i 28074 pjhthlem1 28378 |
Copyright terms: Public domain | W3C validator |