![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hmopadj2 | Structured version Visualization version GIF version |
Description: An operator is Hermitian iff it is self-adjoint. Definition of Hermitian in [Halmos] p. 41. (Contributed by NM, 9-Apr-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hmopadj2 | ⊢ (𝑇 ∈ dom adjℎ → (𝑇 ∈ HrmOp ↔ (adjℎ‘𝑇) = 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hmopadj 28926 | . 2 ⊢ (𝑇 ∈ HrmOp → (adjℎ‘𝑇) = 𝑇) | |
2 | dmadjop 28875 | . . . . 5 ⊢ (𝑇 ∈ dom adjℎ → 𝑇: ℋ⟶ ℋ) | |
3 | 2 | adantr 480 | . . . 4 ⊢ ((𝑇 ∈ dom adjℎ ∧ (adjℎ‘𝑇) = 𝑇) → 𝑇: ℋ⟶ ℋ) |
4 | adj1 28920 | . . . . . . . 8 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ih (𝑇‘𝑦)) = (((adjℎ‘𝑇)‘𝑥) ·ih 𝑦)) | |
5 | 4 | 3expb 1285 | . . . . . . 7 ⊢ ((𝑇 ∈ dom adjℎ ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih (𝑇‘𝑦)) = (((adjℎ‘𝑇)‘𝑥) ·ih 𝑦)) |
6 | 5 | adantlr 751 | . . . . . 6 ⊢ (((𝑇 ∈ dom adjℎ ∧ (adjℎ‘𝑇) = 𝑇) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih (𝑇‘𝑦)) = (((adjℎ‘𝑇)‘𝑥) ·ih 𝑦)) |
7 | fveq1 6228 | . . . . . . . 8 ⊢ ((adjℎ‘𝑇) = 𝑇 → ((adjℎ‘𝑇)‘𝑥) = (𝑇‘𝑥)) | |
8 | 7 | oveq1d 6705 | . . . . . . 7 ⊢ ((adjℎ‘𝑇) = 𝑇 → (((adjℎ‘𝑇)‘𝑥) ·ih 𝑦) = ((𝑇‘𝑥) ·ih 𝑦)) |
9 | 8 | ad2antlr 763 | . . . . . 6 ⊢ (((𝑇 ∈ dom adjℎ ∧ (adjℎ‘𝑇) = 𝑇) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((adjℎ‘𝑇)‘𝑥) ·ih 𝑦) = ((𝑇‘𝑥) ·ih 𝑦)) |
10 | 6, 9 | eqtrd 2685 | . . . . 5 ⊢ (((𝑇 ∈ dom adjℎ ∧ (adjℎ‘𝑇) = 𝑇) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih (𝑇‘𝑦)) = ((𝑇‘𝑥) ·ih 𝑦)) |
11 | 10 | ralrimivva 3000 | . . . 4 ⊢ ((𝑇 ∈ dom adjℎ ∧ (adjℎ‘𝑇) = 𝑇) → ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑇‘𝑥) ·ih 𝑦)) |
12 | elhmop 28860 | . . . 4 ⊢ (𝑇 ∈ HrmOp ↔ (𝑇: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑇‘𝑥) ·ih 𝑦))) | |
13 | 3, 11, 12 | sylanbrc 699 | . . 3 ⊢ ((𝑇 ∈ dom adjℎ ∧ (adjℎ‘𝑇) = 𝑇) → 𝑇 ∈ HrmOp) |
14 | 13 | ex 449 | . 2 ⊢ (𝑇 ∈ dom adjℎ → ((adjℎ‘𝑇) = 𝑇 → 𝑇 ∈ HrmOp)) |
15 | 1, 14 | impbid2 216 | 1 ⊢ (𝑇 ∈ dom adjℎ → (𝑇 ∈ HrmOp ↔ (adjℎ‘𝑇) = 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ∀wral 2941 dom cdm 5143 ⟶wf 5922 ‘cfv 5926 (class class class)co 6690 ℋchil 27904 ·ih csp 27907 HrmOpcho 27935 adjℎcado 27940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 ax-hilex 27984 ax-hfvadd 27985 ax-hvcom 27986 ax-hvass 27987 ax-hv0cl 27988 ax-hvaddid 27989 ax-hfvmul 27990 ax-hvmulid 27991 ax-hvdistr2 27994 ax-hvmul0 27995 ax-hfi 28064 ax-his1 28067 ax-his2 28068 ax-his3 28069 ax-his4 28070 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-po 5064 df-so 5065 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-er 7787 df-map 7901 df-en 7998 df-dom 7999 df-sdom 8000 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-div 10723 df-2 11117 df-cj 13883 df-re 13884 df-im 13885 df-hvsub 27956 df-hmop 28831 df-adjh 28836 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |