MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  i1fmulclem Structured version   Visualization version   GIF version

Theorem i1fmulclem 23375
Description: Decompose the preimage of a constant times a function. (Contributed by Mario Carneiro, 25-Jun-2014.)
Hypotheses
Ref Expression
i1fmulc.2 (𝜑𝐹 ∈ dom ∫1)
i1fmulc.3 (𝜑𝐴 ∈ ℝ)
Assertion
Ref Expression
i1fmulclem (((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) → (((ℝ × {𝐴}) ∘𝑓 · 𝐹) “ {𝐵}) = (𝐹 “ {(𝐵 / 𝐴)}))

Proof of Theorem i1fmulclem
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reex 9971 . . . . . . . . . 10 ℝ ∈ V
21a1i 11 . . . . . . . . 9 (𝜑 → ℝ ∈ V)
3 i1fmulc.3 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
4 i1fmulc.2 . . . . . . . . . . 11 (𝜑𝐹 ∈ dom ∫1)
5 i1ff 23349 . . . . . . . . . . 11 (𝐹 ∈ dom ∫1𝐹:ℝ⟶ℝ)
64, 5syl 17 . . . . . . . . . 10 (𝜑𝐹:ℝ⟶ℝ)
7 ffn 6002 . . . . . . . . . 10 (𝐹:ℝ⟶ℝ → 𝐹 Fn ℝ)
86, 7syl 17 . . . . . . . . 9 (𝜑𝐹 Fn ℝ)
9 eqidd 2622 . . . . . . . . 9 ((𝜑𝑧 ∈ ℝ) → (𝐹𝑧) = (𝐹𝑧))
102, 3, 8, 9ofc1 6873 . . . . . . . 8 ((𝜑𝑧 ∈ ℝ) → (((ℝ × {𝐴}) ∘𝑓 · 𝐹)‘𝑧) = (𝐴 · (𝐹𝑧)))
1110adantlr 750 . . . . . . 7 (((𝜑𝐴 ≠ 0) ∧ 𝑧 ∈ ℝ) → (((ℝ × {𝐴}) ∘𝑓 · 𝐹)‘𝑧) = (𝐴 · (𝐹𝑧)))
1211adantlr 750 . . . . . 6 ((((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (((ℝ × {𝐴}) ∘𝑓 · 𝐹)‘𝑧) = (𝐴 · (𝐹𝑧)))
1312eqeq1d 2623 . . . . 5 ((((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → ((((ℝ × {𝐴}) ∘𝑓 · 𝐹)‘𝑧) = 𝐵 ↔ (𝐴 · (𝐹𝑧)) = 𝐵))
14 eqcom 2628 . . . . . 6 ((𝐹𝑧) = (𝐵 / 𝐴) ↔ (𝐵 / 𝐴) = (𝐹𝑧))
15 simplr 791 . . . . . . . 8 ((((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝐵 ∈ ℝ)
1615recnd 10012 . . . . . . 7 ((((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝐵 ∈ ℂ)
173ad3antrrr 765 . . . . . . . 8 ((((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝐴 ∈ ℝ)
1817recnd 10012 . . . . . . 7 ((((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝐴 ∈ ℂ)
196ad2antrr 761 . . . . . . . . 9 (((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) → 𝐹:ℝ⟶ℝ)
2019ffvelrnda 6315 . . . . . . . 8 ((((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (𝐹𝑧) ∈ ℝ)
2120recnd 10012 . . . . . . 7 ((((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (𝐹𝑧) ∈ ℂ)
22 simpllr 798 . . . . . . 7 ((((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝐴 ≠ 0)
2316, 18, 21, 22divmuld 10767 . . . . . 6 ((((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → ((𝐵 / 𝐴) = (𝐹𝑧) ↔ (𝐴 · (𝐹𝑧)) = 𝐵))
2414, 23syl5bb 272 . . . . 5 ((((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → ((𝐹𝑧) = (𝐵 / 𝐴) ↔ (𝐴 · (𝐹𝑧)) = 𝐵))
2513, 24bitr4d 271 . . . 4 ((((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → ((((ℝ × {𝐴}) ∘𝑓 · 𝐹)‘𝑧) = 𝐵 ↔ (𝐹𝑧) = (𝐵 / 𝐴)))
2625pm5.32da 672 . . 3 (((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) → ((𝑧 ∈ ℝ ∧ (((ℝ × {𝐴}) ∘𝑓 · 𝐹)‘𝑧) = 𝐵) ↔ (𝑧 ∈ ℝ ∧ (𝐹𝑧) = (𝐵 / 𝐴))))
27 remulcl 9965 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 · 𝑦) ∈ ℝ)
2827adantl 482 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 · 𝑦) ∈ ℝ)
29 fconstg 6049 . . . . . . . . 9 (𝐴 ∈ ℝ → (ℝ × {𝐴}):ℝ⟶{𝐴})
303, 29syl 17 . . . . . . . 8 (𝜑 → (ℝ × {𝐴}):ℝ⟶{𝐴})
313snssd 4309 . . . . . . . 8 (𝜑 → {𝐴} ⊆ ℝ)
3230, 31fssd 6014 . . . . . . 7 (𝜑 → (ℝ × {𝐴}):ℝ⟶ℝ)
33 inidm 3800 . . . . . . 7 (ℝ ∩ ℝ) = ℝ
3428, 32, 6, 2, 2, 33off 6865 . . . . . 6 (𝜑 → ((ℝ × {𝐴}) ∘𝑓 · 𝐹):ℝ⟶ℝ)
3534ad2antrr 761 . . . . 5 (((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) → ((ℝ × {𝐴}) ∘𝑓 · 𝐹):ℝ⟶ℝ)
36 ffn 6002 . . . . 5 (((ℝ × {𝐴}) ∘𝑓 · 𝐹):ℝ⟶ℝ → ((ℝ × {𝐴}) ∘𝑓 · 𝐹) Fn ℝ)
3735, 36syl 17 . . . 4 (((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) → ((ℝ × {𝐴}) ∘𝑓 · 𝐹) Fn ℝ)
38 fniniseg 6294 . . . 4 (((ℝ × {𝐴}) ∘𝑓 · 𝐹) Fn ℝ → (𝑧 ∈ (((ℝ × {𝐴}) ∘𝑓 · 𝐹) “ {𝐵}) ↔ (𝑧 ∈ ℝ ∧ (((ℝ × {𝐴}) ∘𝑓 · 𝐹)‘𝑧) = 𝐵)))
3937, 38syl 17 . . 3 (((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) → (𝑧 ∈ (((ℝ × {𝐴}) ∘𝑓 · 𝐹) “ {𝐵}) ↔ (𝑧 ∈ ℝ ∧ (((ℝ × {𝐴}) ∘𝑓 · 𝐹)‘𝑧) = 𝐵)))
4019, 7syl 17 . . . 4 (((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) → 𝐹 Fn ℝ)
41 fniniseg 6294 . . . 4 (𝐹 Fn ℝ → (𝑧 ∈ (𝐹 “ {(𝐵 / 𝐴)}) ↔ (𝑧 ∈ ℝ ∧ (𝐹𝑧) = (𝐵 / 𝐴))))
4240, 41syl 17 . . 3 (((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) → (𝑧 ∈ (𝐹 “ {(𝐵 / 𝐴)}) ↔ (𝑧 ∈ ℝ ∧ (𝐹𝑧) = (𝐵 / 𝐴))))
4326, 39, 423bitr4d 300 . 2 (((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) → (𝑧 ∈ (((ℝ × {𝐴}) ∘𝑓 · 𝐹) “ {𝐵}) ↔ 𝑧 ∈ (𝐹 “ {(𝐵 / 𝐴)})))
4443eqrdv 2619 1 (((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) → (((ℝ × {𝐴}) ∘𝑓 · 𝐹) “ {𝐵}) = (𝐹 “ {(𝐵 / 𝐴)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wne 2790  Vcvv 3186  {csn 4148   × cxp 5072  ccnv 5073  dom cdm 5074  cima 5077   Fn wfn 5842  wf 5843  cfv 5847  (class class class)co 6604  𝑓 cof 6848  cr 9879  0cc0 9880   · cmul 9885   / cdiv 10628  1citg1 23290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-po 4995  df-so 4996  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-sum 14351  df-itg1 23295
This theorem is referenced by:  i1fmulc  23376  itg1mulc  23377
  Copyright terms: Public domain W3C validator