Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inaex Structured version   Visualization version   GIF version

Theorem inaex 40707
Description: Assuming the Tarski-Grothendieck axiom, every ordinal is contained in an inaccessible ordinal. (Contributed by Rohan Ridenour, 13-Aug-2023.)
Assertion
Ref Expression
inaex (𝐴 ∈ On → ∃𝑥 ∈ Inacc 𝐴𝑥)
Distinct variable group:   𝑥,𝐴

Proof of Theorem inaex
StepHypRef Expression
1 inawina 10109 . . . . . . 7 (𝑥 ∈ Inacc → 𝑥 ∈ Inaccw)
2 winaon 10107 . . . . . . 7 (𝑥 ∈ Inaccw𝑥 ∈ On)
31, 2syl 17 . . . . . 6 (𝑥 ∈ Inacc → 𝑥 ∈ On)
43ssriv 3968 . . . . 5 Inacc ⊆ On
5 onmindif 6277 . . . . 5 ((Inacc ⊆ On ∧ 𝐴 ∈ On) → 𝐴 (Inacc ∖ suc 𝐴))
64, 5mpan 688 . . . 4 (𝐴 ∈ On → 𝐴 (Inacc ∖ suc 𝐴))
76adantr 483 . . 3 ((𝐴 ∈ On ∧ 𝑥 = (Inacc ∖ suc 𝐴)) → 𝐴 (Inacc ∖ suc 𝐴))
8 simpr 487 . . 3 ((𝐴 ∈ On ∧ 𝑥 = (Inacc ∖ suc 𝐴)) → 𝑥 = (Inacc ∖ suc 𝐴))
97, 8eleqtrrd 2915 . 2 ((𝐴 ∈ On ∧ 𝑥 = (Inacc ∖ suc 𝐴)) → 𝐴𝑥)
10 difss 4105 . . . . 5 (Inacc ∖ suc 𝐴) ⊆ Inacc
1110, 4sstri 3973 . . . 4 (Inacc ∖ suc 𝐴) ⊆ On
12 inaprc 10255 . . . . . . 7 Inacc ∉ V
1312neli 3124 . . . . . 6 ¬ Inacc ∈ V
14 ssdif0 4320 . . . . . . 7 (Inacc ⊆ suc 𝐴 ↔ (Inacc ∖ suc 𝐴) = ∅)
15 sucexg 7522 . . . . . . . 8 (𝐴 ∈ On → suc 𝐴 ∈ V)
16 ssexg 5224 . . . . . . . . 9 ((Inacc ⊆ suc 𝐴 ∧ suc 𝐴 ∈ V) → Inacc ∈ V)
1716expcom 416 . . . . . . . 8 (suc 𝐴 ∈ V → (Inacc ⊆ suc 𝐴 → Inacc ∈ V))
1815, 17syl 17 . . . . . . 7 (𝐴 ∈ On → (Inacc ⊆ suc 𝐴 → Inacc ∈ V))
1914, 18syl5bir 245 . . . . . 6 (𝐴 ∈ On → ((Inacc ∖ suc 𝐴) = ∅ → Inacc ∈ V))
2013, 19mtoi 201 . . . . 5 (𝐴 ∈ On → ¬ (Inacc ∖ suc 𝐴) = ∅)
2120neqned 3022 . . . 4 (𝐴 ∈ On → (Inacc ∖ suc 𝐴) ≠ ∅)
22 onint 7507 . . . 4 (((Inacc ∖ suc 𝐴) ⊆ On ∧ (Inacc ∖ suc 𝐴) ≠ ∅) → (Inacc ∖ suc 𝐴) ∈ (Inacc ∖ suc 𝐴))
2311, 21, 22sylancr 589 . . 3 (𝐴 ∈ On → (Inacc ∖ suc 𝐴) ∈ (Inacc ∖ suc 𝐴))
2423eldifad 3945 . 2 (𝐴 ∈ On → (Inacc ∖ suc 𝐴) ∈ Inacc)
259, 24rspcime 3626 1 (𝐴 ∈ On → ∃𝑥 ∈ Inacc 𝐴𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1536  wcel 2113  wne 3015  wrex 3138  Vcvv 3493  cdif 3930  wss 3933  c0 4288   cint 4873  Oncon0 6188  suc csuc 6190  Inaccwcwina 10101  Inacccina 10102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5327  ax-un 7458  ax-inf2 9101  ax-ac2 9882  ax-groth 10242
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-nel 3123  df-ral 3142  df-rex 3143  df-reu 3144  df-rmo 3145  df-rab 3146  df-v 3495  df-sbc 3771  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4465  df-pw 4538  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4836  df-int 4874  df-iun 4918  df-iin 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5457  df-eprel 5462  df-po 5471  df-so 5472  df-fr 5511  df-se 5512  df-we 5513  df-xp 5558  df-rel 5559  df-cnv 5560  df-co 5561  df-dm 5562  df-rn 5563  df-res 5564  df-ima 5565  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-isom 6361  df-riota 7111  df-ov 7156  df-oprab 7157  df-mpo 7158  df-om 7578  df-1st 7686  df-2nd 7687  df-wrecs 7944  df-smo 7980  df-recs 8005  df-rdg 8043  df-1o 8099  df-2o 8100  df-oadd 8103  df-er 8286  df-map 8405  df-ixp 8459  df-en 8507  df-dom 8508  df-sdom 8509  df-fin 8510  df-oi 8971  df-har 9019  df-r1 9190  df-card 9365  df-aleph 9366  df-cf 9367  df-acn 9368  df-ac 9539  df-wina 10103  df-ina 10104  df-tsk 10168
This theorem is referenced by:  gruex  40708
  Copyright terms: Public domain W3C validator