MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ip0r Structured version   Visualization version   GIF version

Theorem ip0r 19963
Description: Inner product with a zero second argument. (Contributed by NM, 5-Feb-2007.) (Revised by Mario Carneiro, 7-Oct-2015.)
Hypotheses
Ref Expression
phlsrng.f 𝐹 = (Scalar‘𝑊)
phllmhm.h , = (·𝑖𝑊)
phllmhm.v 𝑉 = (Base‘𝑊)
ip0l.z 𝑍 = (0g𝐹)
ip0l.o 0 = (0g𝑊)
Assertion
Ref Expression
ip0r ((𝑊 ∈ PreHil ∧ 𝐴𝑉) → (𝐴 , 0 ) = 𝑍)

Proof of Theorem ip0r
StepHypRef Expression
1 phlsrng.f . . . 4 𝐹 = (Scalar‘𝑊)
2 phllmhm.h . . . 4 , = (·𝑖𝑊)
3 phllmhm.v . . . 4 𝑉 = (Base‘𝑊)
4 ip0l.z . . . 4 𝑍 = (0g𝐹)
5 ip0l.o . . . 4 0 = (0g𝑊)
61, 2, 3, 4, 5ip0l 19962 . . 3 ((𝑊 ∈ PreHil ∧ 𝐴𝑉) → ( 0 , 𝐴) = 𝑍)
76fveq2d 6182 . 2 ((𝑊 ∈ PreHil ∧ 𝐴𝑉) → ((*𝑟𝐹)‘( 0 , 𝐴)) = ((*𝑟𝐹)‘𝑍))
8 phllmod 19956 . . . . 5 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
98adantr 481 . . . 4 ((𝑊 ∈ PreHil ∧ 𝐴𝑉) → 𝑊 ∈ LMod)
103, 5lmod0vcl 18873 . . . 4 (𝑊 ∈ LMod → 0𝑉)
119, 10syl 17 . . 3 ((𝑊 ∈ PreHil ∧ 𝐴𝑉) → 0𝑉)
12 eqid 2620 . . . . . 6 (*𝑟𝐹) = (*𝑟𝐹)
131, 2, 3, 12ipcj 19960 . . . . 5 ((𝑊 ∈ PreHil ∧ 0𝑉𝐴𝑉) → ((*𝑟𝐹)‘( 0 , 𝐴)) = (𝐴 , 0 ))
14133expa 1263 . . . 4 (((𝑊 ∈ PreHil ∧ 0𝑉) ∧ 𝐴𝑉) → ((*𝑟𝐹)‘( 0 , 𝐴)) = (𝐴 , 0 ))
1514an32s 845 . . 3 (((𝑊 ∈ PreHil ∧ 𝐴𝑉) ∧ 0𝑉) → ((*𝑟𝐹)‘( 0 , 𝐴)) = (𝐴 , 0 ))
1611, 15mpdan 701 . 2 ((𝑊 ∈ PreHil ∧ 𝐴𝑉) → ((*𝑟𝐹)‘( 0 , 𝐴)) = (𝐴 , 0 ))
171phlsrng 19957 . . . 4 (𝑊 ∈ PreHil → 𝐹 ∈ *-Ring)
1817adantr 481 . . 3 ((𝑊 ∈ PreHil ∧ 𝐴𝑉) → 𝐹 ∈ *-Ring)
1912, 4srng0 18841 . . 3 (𝐹 ∈ *-Ring → ((*𝑟𝐹)‘𝑍) = 𝑍)
2018, 19syl 17 . 2 ((𝑊 ∈ PreHil ∧ 𝐴𝑉) → ((*𝑟𝐹)‘𝑍) = 𝑍)
217, 16, 203eqtr3d 2662 1 ((𝑊 ∈ PreHil ∧ 𝐴𝑉) → (𝐴 , 0 ) = 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1481  wcel 1988  cfv 5876  (class class class)co 6635  Basecbs 15838  *𝑟cstv 15924  Scalarcsca 15925  ·𝑖cip 15927  0gc0g 16081  *-Ringcsr 18825  LModclmod 18844  PreHilcphl 19950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-tpos 7337  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-er 7727  df-map 7844  df-en 7941  df-dom 7942  df-sdom 7943  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-nn 11006  df-2 11064  df-3 11065  df-4 11066  df-5 11067  df-6 11068  df-7 11069  df-8 11070  df-ndx 15841  df-slot 15842  df-base 15844  df-sets 15845  df-plusg 15935  df-mulr 15936  df-sca 15938  df-vsca 15939  df-ip 15940  df-0g 16083  df-mgm 17223  df-sgrp 17265  df-mnd 17276  df-mhm 17316  df-grp 17406  df-ghm 17639  df-mgp 18471  df-ur 18483  df-ring 18530  df-oppr 18604  df-rnghom 18696  df-staf 18826  df-srng 18827  df-lmod 18846  df-lmhm 19003  df-lvec 19084  df-sra 19153  df-rgmod 19154  df-phl 19952
This theorem is referenced by:  cphip0r  22984  ipcau2  23014
  Copyright terms: Public domain W3C validator