![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > phllmod | Structured version Visualization version GIF version |
Description: A pre-Hilbert space is a left module. (Contributed by Mario Carneiro, 7-Oct-2015.) |
Ref | Expression |
---|---|
phllmod | ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | phllvec 20022 | . 2 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LVec) | |
2 | lveclmod 19154 | . 2 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2030 LModclmod 18911 LVecclvec 19150 PreHilcphl 20017 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-nul 4822 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-mpt 4763 df-iota 5889 df-fv 5934 df-ov 6693 df-lvec 19151 df-phl 20019 |
This theorem is referenced by: iporthcom 20028 ip0l 20029 ip0r 20030 ipdir 20032 ipdi 20033 ip2di 20034 ipsubdir 20035 ipsubdi 20036 ip2subdi 20037 ipass 20038 ipassr 20039 ip2eq 20046 phssip 20051 ocvlss 20064 ocvin 20066 ocvlsp 20068 ocvz 20070 ocv1 20071 lsmcss 20084 pjdm2 20103 pjff 20104 pjf2 20106 pjfo 20107 ocvpj 20109 obselocv 20120 obslbs 20122 tchclm 23077 ipcau2 23079 tchcphlem1 23080 tchcphlem2 23081 tchcph 23082 pjth 23256 |
Copyright terms: Public domain | W3C validator |