MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscvsp Structured version   Visualization version   GIF version

Theorem iscvsp 23732
Description: The predicate "is a subcomplex vector space". (Contributed by NM, 31-May-2008.) (Revised by AV, 4-Oct-2021.)
Hypotheses
Ref Expression
iscvsp.t · = ( ·𝑠𝑊)
iscvsp.a + = (+g𝑊)
iscvsp.v 𝑉 = (Base‘𝑊)
iscvsp.s 𝑆 = (Scalar‘𝑊)
iscvsp.k 𝐾 = (Base‘𝑆)
Assertion
Ref Expression
iscvsp (𝑊 ∈ ℂVec ↔ ((𝑊 ∈ Grp ∧ (𝑆 ∈ DivRing ∧ 𝑆 = (ℂflds 𝐾)) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ ∀𝑥𝑉 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦𝐾 ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))))))
Distinct variable groups:   𝑥,𝐾,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝑥,𝑉,𝑦,𝑧   𝑥,𝑊,𝑦,𝑧   𝑥, + ,𝑦,𝑧   𝑥, · ,𝑦,𝑧

Proof of Theorem iscvsp
StepHypRef Expression
1 iscvs 23731 . 2 (𝑊 ∈ ℂVec ↔ (𝑊 ∈ ℂMod ∧ (Scalar‘𝑊) ∈ DivRing))
2 iscvsp.t . . . . 5 · = ( ·𝑠𝑊)
3 iscvsp.a . . . . 5 + = (+g𝑊)
4 iscvsp.v . . . . 5 𝑉 = (Base‘𝑊)
5 iscvsp.s . . . . 5 𝑆 = (Scalar‘𝑊)
6 iscvsp.k . . . . 5 𝐾 = (Base‘𝑆)
72, 3, 4, 5, 6isclmp 23701 . . . 4 (𝑊 ∈ ℂMod ↔ ((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ ∀𝑥𝑉 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦𝐾 ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))))))
87anbi2ci 626 . . 3 ((𝑊 ∈ ℂMod ∧ (Scalar‘𝑊) ∈ DivRing) ↔ ((Scalar‘𝑊) ∈ DivRing ∧ ((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ ∀𝑥𝑉 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦𝐾 ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥))))))))
9 anass 471 . . 3 ((((Scalar‘𝑊) ∈ DivRing ∧ (𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld))) ∧ ∀𝑥𝑉 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦𝐾 ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))))) ↔ ((Scalar‘𝑊) ∈ DivRing ∧ ((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ ∀𝑥𝑉 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦𝐾 ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥))))))))
10 3anan12 1092 . . . . . . 7 ((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ↔ (𝑆 = (ℂflds 𝐾) ∧ (𝑊 ∈ Grp ∧ 𝐾 ∈ (SubRing‘ℂfld))))
1110anbi2i 624 . . . . . 6 (((Scalar‘𝑊) ∈ DivRing ∧ (𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld))) ↔ ((Scalar‘𝑊) ∈ DivRing ∧ (𝑆 = (ℂflds 𝐾) ∧ (𝑊 ∈ Grp ∧ 𝐾 ∈ (SubRing‘ℂfld)))))
12 anass 471 . . . . . 6 ((((Scalar‘𝑊) ∈ DivRing ∧ 𝑆 = (ℂflds 𝐾)) ∧ (𝑊 ∈ Grp ∧ 𝐾 ∈ (SubRing‘ℂfld))) ↔ ((Scalar‘𝑊) ∈ DivRing ∧ (𝑆 = (ℂflds 𝐾) ∧ (𝑊 ∈ Grp ∧ 𝐾 ∈ (SubRing‘ℂfld)))))
135eqcomi 2830 . . . . . . . . 9 (Scalar‘𝑊) = 𝑆
1413eleq1i 2903 . . . . . . . 8 ((Scalar‘𝑊) ∈ DivRing ↔ 𝑆 ∈ DivRing)
1514anbi1i 625 . . . . . . 7 (((Scalar‘𝑊) ∈ DivRing ∧ 𝑆 = (ℂflds 𝐾)) ↔ (𝑆 ∈ DivRing ∧ 𝑆 = (ℂflds 𝐾)))
1615anbi1i 625 . . . . . 6 ((((Scalar‘𝑊) ∈ DivRing ∧ 𝑆 = (ℂflds 𝐾)) ∧ (𝑊 ∈ Grp ∧ 𝐾 ∈ (SubRing‘ℂfld))) ↔ ((𝑆 ∈ DivRing ∧ 𝑆 = (ℂflds 𝐾)) ∧ (𝑊 ∈ Grp ∧ 𝐾 ∈ (SubRing‘ℂfld))))
1711, 12, 163bitr2i 301 . . . . 5 (((Scalar‘𝑊) ∈ DivRing ∧ (𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld))) ↔ ((𝑆 ∈ DivRing ∧ 𝑆 = (ℂflds 𝐾)) ∧ (𝑊 ∈ Grp ∧ 𝐾 ∈ (SubRing‘ℂfld))))
18 3anan12 1092 . . . . 5 ((𝑊 ∈ Grp ∧ (𝑆 ∈ DivRing ∧ 𝑆 = (ℂflds 𝐾)) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ↔ ((𝑆 ∈ DivRing ∧ 𝑆 = (ℂflds 𝐾)) ∧ (𝑊 ∈ Grp ∧ 𝐾 ∈ (SubRing‘ℂfld))))
1917, 18bitr4i 280 . . . 4 (((Scalar‘𝑊) ∈ DivRing ∧ (𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld))) ↔ (𝑊 ∈ Grp ∧ (𝑆 ∈ DivRing ∧ 𝑆 = (ℂflds 𝐾)) ∧ 𝐾 ∈ (SubRing‘ℂfld)))
2019anbi1i 625 . . 3 ((((Scalar‘𝑊) ∈ DivRing ∧ (𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld))) ∧ ∀𝑥𝑉 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦𝐾 ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))))) ↔ ((𝑊 ∈ Grp ∧ (𝑆 ∈ DivRing ∧ 𝑆 = (ℂflds 𝐾)) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ ∀𝑥𝑉 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦𝐾 ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))))))
218, 9, 203bitr2i 301 . 2 ((𝑊 ∈ ℂMod ∧ (Scalar‘𝑊) ∈ DivRing) ↔ ((𝑊 ∈ Grp ∧ (𝑆 ∈ DivRing ∧ 𝑆 = (ℂflds 𝐾)) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ ∀𝑥𝑉 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦𝐾 ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))))))
221, 21bitri 277 1 (𝑊 ∈ ℂVec ↔ ((𝑊 ∈ Grp ∧ (𝑆 ∈ DivRing ∧ 𝑆 = (ℂflds 𝐾)) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ ∀𝑥𝑉 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦𝐾 ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))))))
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3138  cfv 6355  (class class class)co 7156  1c1 10538   + caddc 10540   · cmul 10542  Basecbs 16483  s cress 16484  +gcplusg 16565  Scalarcsca 16568   ·𝑠 cvsca 16569  Grpcgrp 18103  DivRingcdr 19502  SubRingcsubrg 19531  fldccnfld 20545  ℂModcclm 23666  ℂVecccvs 23727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-fz 12894  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-0g 16715  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-grp 18106  df-subg 18276  df-cmn 18908  df-mgp 19240  df-ur 19252  df-ring 19299  df-cring 19300  df-subrg 19533  df-lmod 19636  df-lvec 19875  df-cnfld 20546  df-clm 23667  df-cvs 23728
This theorem is referenced by:  iscvsi  23733
  Copyright terms: Public domain W3C validator