MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isclmp Structured version   Visualization version   GIF version

Theorem isclmp 22800
Description: The predicate "is a complex left module space." (Contributed by NM, 31-May-2008.) (Revised by AV, 4-Oct-2021.)
Hypotheses
Ref Expression
isclmp.t · = ( ·𝑠𝑊)
isclmp.a + = (+g𝑊)
isclmp.v 𝑉 = (Base‘𝑊)
isclmp.s 𝑆 = (Scalar‘𝑊)
isclmp.k 𝐾 = (Base‘𝑆)
Assertion
Ref Expression
isclmp (𝑊 ∈ ℂMod ↔ ((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ ∀𝑥𝑉 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦𝐾 ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))))))
Distinct variable groups:   𝑥,𝐾,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝑥,𝑉,𝑦,𝑧   𝑥,𝑊,𝑦,𝑧   𝑥, + ,𝑦,𝑧   𝑥, · ,𝑦,𝑧

Proof of Theorem isclmp
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 isclmp.s . . 3 𝑆 = (Scalar‘𝑊)
2 isclmp.k . . 3 𝐾 = (Base‘𝑆)
31, 2isclm 22767 . 2 (𝑊 ∈ ℂMod ↔ (𝑊 ∈ LMod ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)))
4 isclmp.v . . . . 5 𝑉 = (Base‘𝑊)
5 isclmp.a . . . . 5 + = (+g𝑊)
6 isclmp.t . . . . 5 · = ( ·𝑠𝑊)
7 eqid 2626 . . . . 5 (+g𝑆) = (+g𝑆)
8 eqid 2626 . . . . 5 (.r𝑆) = (.r𝑆)
9 eqid 2626 . . . . 5 (1r𝑆) = (1r𝑆)
104, 5, 6, 1, 2, 7, 8, 9islmod 18783 . . . 4 (𝑊 ∈ LMod ↔ (𝑊 ∈ Grp ∧ 𝑆 ∈ Ring ∧ ∀𝑟𝐾𝑦𝐾𝑧𝑉𝑥𝑉 (((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))) ∧ (((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)) ∧ ((1r𝑆) · 𝑥) = 𝑥))))
11103anbi1i 1251 . . 3 ((𝑊 ∈ LMod ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ↔ ((𝑊 ∈ Grp ∧ 𝑆 ∈ Ring ∧ ∀𝑟𝐾𝑦𝐾𝑧𝑉𝑥𝑉 (((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))) ∧ (((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)) ∧ ((1r𝑆) · 𝑥) = 𝑥))) ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)))
12 3anass 1040 . . . 4 (((𝑊 ∈ Grp ∧ 𝑆 ∈ Ring ∧ ∀𝑟𝐾𝑦𝐾𝑧𝑉𝑥𝑉 (((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))) ∧ (((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)) ∧ ((1r𝑆) · 𝑥) = 𝑥))) ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ↔ ((𝑊 ∈ Grp ∧ 𝑆 ∈ Ring ∧ ∀𝑟𝐾𝑦𝐾𝑧𝑉𝑥𝑉 (((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))) ∧ (((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)) ∧ ((1r𝑆) · 𝑥) = 𝑥))) ∧ (𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld))))
13 df-3an 1038 . . . . 5 ((𝑊 ∈ Grp ∧ 𝑆 ∈ Ring ∧ ∀𝑟𝐾𝑦𝐾𝑧𝑉𝑥𝑉 (((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))) ∧ (((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)) ∧ ((1r𝑆) · 𝑥) = 𝑥))) ↔ ((𝑊 ∈ Grp ∧ 𝑆 ∈ Ring) ∧ ∀𝑟𝐾𝑦𝐾𝑧𝑉𝑥𝑉 (((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))) ∧ (((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)) ∧ ((1r𝑆) · 𝑥) = 𝑥))))
1413anbi1i 730 . . . 4 (((𝑊 ∈ Grp ∧ 𝑆 ∈ Ring ∧ ∀𝑟𝐾𝑦𝐾𝑧𝑉𝑥𝑉 (((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))) ∧ (((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)) ∧ ((1r𝑆) · 𝑥) = 𝑥))) ∧ (𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld))) ↔ (((𝑊 ∈ Grp ∧ 𝑆 ∈ Ring) ∧ ∀𝑟𝐾𝑦𝐾𝑧𝑉𝑥𝑉 (((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))) ∧ (((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)) ∧ ((1r𝑆) · 𝑥) = 𝑥))) ∧ (𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld))))
1512, 14bitri 264 . . 3 (((𝑊 ∈ Grp ∧ 𝑆 ∈ Ring ∧ ∀𝑟𝐾𝑦𝐾𝑧𝑉𝑥𝑉 (((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))) ∧ (((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)) ∧ ((1r𝑆) · 𝑥) = 𝑥))) ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ↔ (((𝑊 ∈ Grp ∧ 𝑆 ∈ Ring) ∧ ∀𝑟𝐾𝑦𝐾𝑧𝑉𝑥𝑉 (((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))) ∧ (((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)) ∧ ((1r𝑆) · 𝑥) = 𝑥))) ∧ (𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld))))
16 an32 838 . . 3 ((((𝑊 ∈ Grp ∧ 𝑆 ∈ Ring) ∧ ∀𝑟𝐾𝑦𝐾𝑧𝑉𝑥𝑉 (((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))) ∧ (((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)) ∧ ((1r𝑆) · 𝑥) = 𝑥))) ∧ (𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld))) ↔ (((𝑊 ∈ Grp ∧ 𝑆 ∈ Ring) ∧ (𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld))) ∧ ∀𝑟𝐾𝑦𝐾𝑧𝑉𝑥𝑉 (((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))) ∧ (((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)) ∧ ((1r𝑆) · 𝑥) = 𝑥))))
1711, 15, 163bitri 286 . 2 ((𝑊 ∈ LMod ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ↔ (((𝑊 ∈ Grp ∧ 𝑆 ∈ Ring) ∧ (𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld))) ∧ ∀𝑟𝐾𝑦𝐾𝑧𝑉𝑥𝑉 (((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))) ∧ (((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)) ∧ ((1r𝑆) · 𝑥) = 𝑥))))
18 an32 838 . . . . 5 (((𝑊 ∈ Grp ∧ 𝑆 ∈ Ring) ∧ (𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld))) ↔ ((𝑊 ∈ Grp ∧ (𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld))) ∧ 𝑆 ∈ Ring))
19 3anass 1040 . . . . . . 7 ((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ↔ (𝑊 ∈ Grp ∧ (𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld))))
2019bicomi 214 . . . . . 6 ((𝑊 ∈ Grp ∧ (𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld))) ↔ (𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)))
2120anbi1i 730 . . . . 5 (((𝑊 ∈ Grp ∧ (𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld))) ∧ 𝑆 ∈ Ring) ↔ ((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ 𝑆 ∈ Ring))
2218, 21bitri 264 . . . 4 (((𝑊 ∈ Grp ∧ 𝑆 ∈ Ring) ∧ (𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld))) ↔ ((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ 𝑆 ∈ Ring))
2322anbi1i 730 . . 3 ((((𝑊 ∈ Grp ∧ 𝑆 ∈ Ring) ∧ (𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld))) ∧ ∀𝑟𝐾𝑦𝐾𝑧𝑉𝑥𝑉 (((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))) ∧ (((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)) ∧ ((1r𝑆) · 𝑥) = 𝑥))) ↔ (((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ 𝑆 ∈ Ring) ∧ ∀𝑟𝐾𝑦𝐾𝑧𝑉𝑥𝑉 (((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))) ∧ (((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)) ∧ ((1r𝑆) · 𝑥) = 𝑥))))
24 anass 680 . . 3 ((((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ 𝑆 ∈ Ring) ∧ ∀𝑟𝐾𝑦𝐾𝑧𝑉𝑥𝑉 (((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))) ∧ (((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)) ∧ ((1r𝑆) · 𝑥) = 𝑥))) ↔ ((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ (𝑆 ∈ Ring ∧ ∀𝑟𝐾𝑦𝐾𝑧𝑉𝑥𝑉 (((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))) ∧ (((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)) ∧ ((1r𝑆) · 𝑥) = 𝑥)))))
25 df-3an 1038 . . . . . . . . . . 11 (((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))) ↔ (((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))))
26 ancom 466 . . . . . . . . . . 11 ((((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)) ∧ ((1r𝑆) · 𝑥) = 𝑥) ↔ (((1r𝑆) · 𝑥) = 𝑥 ∧ ((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥))))
2725, 26anbi12i 732 . . . . . . . . . 10 ((((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))) ∧ (((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)) ∧ ((1r𝑆) · 𝑥) = 𝑥)) ↔ ((((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))) ∧ (((1r𝑆) · 𝑥) = 𝑥 ∧ ((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))))
28 an4 864 . . . . . . . . . 10 (((((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))) ∧ (((1r𝑆) · 𝑥) = 𝑥 ∧ ((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ ((((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ ((1r𝑆) · 𝑥) = 𝑥) ∧ (((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))))
29 an32 838 . . . . . . . . . . . 12 ((((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ ((1r𝑆) · 𝑥) = 𝑥) ↔ (((𝑦 · 𝑥) ∈ 𝑉 ∧ ((1r𝑆) · 𝑥) = 𝑥) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))))
30 ancom 466 . . . . . . . . . . . . 13 (((𝑦 · 𝑥) ∈ 𝑉 ∧ ((1r𝑆) · 𝑥) = 𝑥) ↔ (((1r𝑆) · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉))
3130anbi1i 730 . . . . . . . . . . . 12 ((((𝑦 · 𝑥) ∈ 𝑉 ∧ ((1r𝑆) · 𝑥) = 𝑥) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ↔ ((((1r𝑆) · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))))
3229, 31bitri 264 . . . . . . . . . . 11 ((((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ ((1r𝑆) · 𝑥) = 𝑥) ↔ ((((1r𝑆) · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))))
3332anbi1i 730 . . . . . . . . . 10 (((((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ ((1r𝑆) · 𝑥) = 𝑥) ∧ (((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ (((((1r𝑆) · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))))
3427, 28, 333bitri 286 . . . . . . . . 9 ((((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))) ∧ (((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)) ∧ ((1r𝑆) · 𝑥) = 𝑥)) ↔ (((((1r𝑆) · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))))
35 fveq2 6150 . . . . . . . . . . . . . . . . . 18 (𝑆 = (ℂflds 𝐾) → (1r𝑆) = (1r‘(ℂflds 𝐾)))
36 eqid 2626 . . . . . . . . . . . . . . . . . . . 20 (ℂflds 𝐾) = (ℂflds 𝐾)
37 eqid 2626 . . . . . . . . . . . . . . . . . . . 20 (1r‘ℂfld) = (1r‘ℂfld)
3836, 37subrg1 18706 . . . . . . . . . . . . . . . . . . 19 (𝐾 ∈ (SubRing‘ℂfld) → (1r‘ℂfld) = (1r‘(ℂflds 𝐾)))
3938eqcomd 2632 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ (SubRing‘ℂfld) → (1r‘(ℂflds 𝐾)) = (1r‘ℂfld))
4035, 39sylan9eq 2680 . . . . . . . . . . . . . . . . 17 ((𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → (1r𝑆) = (1r‘ℂfld))
41 cnfld1 19685 . . . . . . . . . . . . . . . . 17 1 = (1r‘ℂfld)
4240, 41syl6eqr 2678 . . . . . . . . . . . . . . . 16 ((𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → (1r𝑆) = 1)
4342oveq1d 6620 . . . . . . . . . . . . . . 15 ((𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → ((1r𝑆) · 𝑥) = (1 · 𝑥))
4443eqeq1d 2628 . . . . . . . . . . . . . 14 ((𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → (((1r𝑆) · 𝑥) = 𝑥 ↔ (1 · 𝑥) = 𝑥))
45443adant1 1077 . . . . . . . . . . . . 13 ((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → (((1r𝑆) · 𝑥) = 𝑥 ↔ (1 · 𝑥) = 𝑥))
4645ad2antrr 761 . . . . . . . . . . . 12 ((((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ (𝑟𝐾𝑦𝐾)) ∧ (𝑧𝑉𝑥𝑉)) → (((1r𝑆) · 𝑥) = 𝑥 ↔ (1 · 𝑥) = 𝑥))
4746anbi1d 740 . . . . . . . . . . 11 ((((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ (𝑟𝐾𝑦𝐾)) ∧ (𝑧𝑉𝑥𝑉)) → ((((1r𝑆) · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ↔ ((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉)))
4847anbi1d 740 . . . . . . . . . 10 ((((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ (𝑟𝐾𝑦𝐾)) ∧ (𝑧𝑉𝑥𝑉)) → (((((1r𝑆) · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ↔ (((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)))))
49 eqid 2626 . . . . . . . . . . . . . . . . . . 19 (+g‘ℂfld) = (+g‘ℂfld)
5036, 49ressplusg 15909 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ (SubRing‘ℂfld) → (+g‘ℂfld) = (+g‘(ℂflds 𝐾)))
5150adantl 482 . . . . . . . . . . . . . . . . 17 ((𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → (+g‘ℂfld) = (+g‘(ℂflds 𝐾)))
52 cnfldadd 19665 . . . . . . . . . . . . . . . . . 18 + = (+g‘ℂfld)
5352a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → + = (+g‘ℂfld))
54 fveq2 6150 . . . . . . . . . . . . . . . . . 18 (𝑆 = (ℂflds 𝐾) → (+g𝑆) = (+g‘(ℂflds 𝐾)))
5554adantr 481 . . . . . . . . . . . . . . . . 17 ((𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → (+g𝑆) = (+g‘(ℂflds 𝐾)))
5651, 53, 553eqtr4rd 2671 . . . . . . . . . . . . . . . 16 ((𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → (+g𝑆) = + )
57563adant1 1077 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → (+g𝑆) = + )
5857oveqd 6622 . . . . . . . . . . . . . 14 ((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → (𝑟(+g𝑆)𝑦) = (𝑟 + 𝑦))
5958ad2antrr 761 . . . . . . . . . . . . 13 ((((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ (𝑟𝐾𝑦𝐾)) ∧ (𝑧𝑉𝑥𝑉)) → (𝑟(+g𝑆)𝑦) = (𝑟 + 𝑦))
6059oveq1d 6620 . . . . . . . . . . . 12 ((((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ (𝑟𝐾𝑦𝐾)) ∧ (𝑧𝑉𝑥𝑉)) → ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 + 𝑦) · 𝑥))
6160eqeq1d 2628 . . . . . . . . . . 11 ((((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ (𝑟𝐾𝑦𝐾)) ∧ (𝑧𝑉𝑥𝑉)) → (((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ↔ ((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))))
62 eqid 2626 . . . . . . . . . . . . . . . . . 18 (.r‘ℂfld) = (.r‘ℂfld)
6336, 62ressmulr 15922 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ (SubRing‘ℂfld) → (.r‘ℂfld) = (.r‘(ℂflds 𝐾)))
64633ad2ant3 1082 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → (.r‘ℂfld) = (.r‘(ℂflds 𝐾)))
65 cnfldmul 19666 . . . . . . . . . . . . . . . . 17 · = (.r‘ℂfld)
6665a1i 11 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → · = (.r‘ℂfld))
67 fveq2 6150 . . . . . . . . . . . . . . . . 17 (𝑆 = (ℂflds 𝐾) → (.r𝑆) = (.r‘(ℂflds 𝐾)))
68673ad2ant2 1081 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → (.r𝑆) = (.r‘(ℂflds 𝐾)))
6964, 66, 683eqtr4rd 2671 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → (.r𝑆) = · )
7069oveqd 6622 . . . . . . . . . . . . . 14 ((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → (𝑟(.r𝑆)𝑦) = (𝑟 · 𝑦))
7170ad2antrr 761 . . . . . . . . . . . . 13 ((((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ (𝑟𝐾𝑦𝐾)) ∧ (𝑧𝑉𝑥𝑉)) → (𝑟(.r𝑆)𝑦) = (𝑟 · 𝑦))
7271oveq1d 6620 . . . . . . . . . . . 12 ((((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ (𝑟𝐾𝑦𝐾)) ∧ (𝑧𝑉𝑥𝑉)) → ((𝑟(.r𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑦) · 𝑥))
7372eqeq1d 2628 . . . . . . . . . . 11 ((((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ (𝑟𝐾𝑦𝐾)) ∧ (𝑧𝑉𝑥𝑉)) → (((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)) ↔ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥))))
7461, 73anbi12d 746 . . . . . . . . . 10 ((((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ (𝑟𝐾𝑦𝐾)) ∧ (𝑧𝑉𝑥𝑉)) → ((((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥))) ↔ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))))
7548, 74anbi12d 746 . . . . . . . . 9 ((((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ (𝑟𝐾𝑦𝐾)) ∧ (𝑧𝑉𝑥𝑉)) → ((((((1r𝑆) · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥))))))
7634, 75syl5bb 272 . . . . . . . 8 ((((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ (𝑟𝐾𝑦𝐾)) ∧ (𝑧𝑉𝑥𝑉)) → ((((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))) ∧ (((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)) ∧ ((1r𝑆) · 𝑥) = 𝑥)) ↔ ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥))))))
77762ralbidva 2987 . . . . . . 7 (((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ (𝑟𝐾𝑦𝐾)) → (∀𝑧𝑉𝑥𝑉 (((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))) ∧ (((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)) ∧ ((1r𝑆) · 𝑥) = 𝑥)) ↔ ∀𝑧𝑉𝑥𝑉 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥))))))
78772ralbidva 2987 . . . . . 6 ((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → (∀𝑟𝐾𝑦𝐾𝑧𝑉𝑥𝑉 (((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))) ∧ (((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)) ∧ ((1r𝑆) · 𝑥) = 𝑥)) ↔ ∀𝑟𝐾𝑦𝐾𝑧𝑉𝑥𝑉 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥))))))
79 ralcom 3095 . . . . . . . . . . 11 (∀𝑧𝑉𝑥𝑉 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ ∀𝑥𝑉𝑧𝑉 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))))
8079ralbii 2979 . . . . . . . . . 10 (∀𝑦𝐾𝑧𝑉𝑥𝑉 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ ∀𝑦𝐾𝑥𝑉𝑧𝑉 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))))
81 ralcom 3095 . . . . . . . . . 10 (∀𝑦𝐾𝑥𝑉𝑧𝑉 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ ∀𝑥𝑉𝑦𝐾𝑧𝑉 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))))
8280, 81bitri 264 . . . . . . . . 9 (∀𝑦𝐾𝑧𝑉𝑥𝑉 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ ∀𝑥𝑉𝑦𝐾𝑧𝑉 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))))
8382ralbii 2979 . . . . . . . 8 (∀𝑟𝐾𝑦𝐾𝑧𝑉𝑥𝑉 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ ∀𝑟𝐾𝑥𝑉𝑦𝐾𝑧𝑉 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))))
84 ralcom 3095 . . . . . . . 8 (∀𝑟𝐾𝑥𝑉𝑦𝐾𝑧𝑉 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ ∀𝑥𝑉𝑟𝐾𝑦𝐾𝑧𝑉 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))))
8583, 84bitri 264 . . . . . . 7 (∀𝑟𝐾𝑦𝐾𝑧𝑉𝑥𝑉 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ ∀𝑥𝑉𝑟𝐾𝑦𝐾𝑧𝑉 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))))
86 ralcom 3095 . . . . . . . 8 (∀𝑟𝐾𝑦𝐾𝑧𝑉 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ ∀𝑦𝐾𝑟𝐾𝑧𝑉 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))))
8786ralbii 2979 . . . . . . 7 (∀𝑥𝑉𝑟𝐾𝑦𝐾𝑧𝑉 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ ∀𝑥𝑉𝑦𝐾𝑟𝐾𝑧𝑉 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))))
88 ralcom 3095 . . . . . . . 8 (∀𝑟𝐾𝑧𝑉 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ ∀𝑧𝑉𝑟𝐾 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))))
89882ralbii 2980 . . . . . . 7 (∀𝑥𝑉𝑦𝐾𝑟𝐾𝑧𝑉 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ ∀𝑥𝑉𝑦𝐾𝑧𝑉𝑟𝐾 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))))
9085, 87, 893bitri 286 . . . . . 6 (∀𝑟𝐾𝑦𝐾𝑧𝑉𝑥𝑉 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ ∀𝑥𝑉𝑦𝐾𝑧𝑉𝑟𝐾 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))))
9178, 90syl6bb 276 . . . . 5 ((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → (∀𝑟𝐾𝑦𝐾𝑧𝑉𝑥𝑉 (((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))) ∧ (((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)) ∧ ((1r𝑆) · 𝑥) = 𝑥)) ↔ ∀𝑥𝑉𝑦𝐾𝑧𝑉𝑟𝐾 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥))))))
9236subrgring 18699 . . . . . . . 8 (𝐾 ∈ (SubRing‘ℂfld) → (ℂflds 𝐾) ∈ Ring)
93923ad2ant3 1082 . . . . . . 7 ((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → (ℂflds 𝐾) ∈ Ring)
94 eleq1 2692 . . . . . . . 8 (𝑆 = (ℂflds 𝐾) → (𝑆 ∈ Ring ↔ (ℂflds 𝐾) ∈ Ring))
95943ad2ant2 1081 . . . . . . 7 ((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → (𝑆 ∈ Ring ↔ (ℂflds 𝐾) ∈ Ring))
9693, 95mpbird 247 . . . . . 6 ((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → 𝑆 ∈ Ring)
9796biantrurd 529 . . . . 5 ((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → (∀𝑟𝐾𝑦𝐾𝑧𝑉𝑥𝑉 (((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))) ∧ (((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)) ∧ ((1r𝑆) · 𝑥) = 𝑥)) ↔ (𝑆 ∈ Ring ∧ ∀𝑟𝐾𝑦𝐾𝑧𝑉𝑥𝑉 (((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))) ∧ (((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)) ∧ ((1r𝑆) · 𝑥) = 𝑥)))))
984grpbn0 17367 . . . . . . . 8 (𝑊 ∈ Grp → 𝑉 ≠ ∅)
99983ad2ant1 1080 . . . . . . 7 ((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → 𝑉 ≠ ∅)
10037subrg1cl 18704 . . . . . . . . 9 (𝐾 ∈ (SubRing‘ℂfld) → (1r‘ℂfld) ∈ 𝐾)
101 ne0i 3902 . . . . . . . . 9 ((1r‘ℂfld) ∈ 𝐾𝐾 ≠ ∅)
102100, 101syl 17 . . . . . . . 8 (𝐾 ∈ (SubRing‘ℂfld) → 𝐾 ≠ ∅)
1031023ad2ant3 1082 . . . . . . 7 ((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → 𝐾 ≠ ∅)
104 ancom 466 . . . . . . . . . . . . . . . . 17 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ↔ ((𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉)))
105104anbi1i 730 . . . . . . . . . . . . . . . 16 (((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ (((𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉)) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))))
106105a1i 11 . . . . . . . . . . . . . . 15 ((𝑉 ≠ ∅ ∧ 𝐾 ≠ ∅) → (((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ (((𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉)) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥))))))
107106ralbidv 2985 . . . . . . . . . . . . . 14 ((𝑉 ≠ ∅ ∧ 𝐾 ≠ ∅) → (∀𝑟𝐾 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ ∀𝑟𝐾 (((𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉)) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥))))))
108 r19.28zv 4043 . . . . . . . . . . . . . . 15 (𝐾 ≠ ∅ → (∀𝑟𝐾 (((𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉)) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ (((𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉)) ∧ ∀𝑟𝐾 (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥))))))
109108adantl 482 . . . . . . . . . . . . . 14 ((𝑉 ≠ ∅ ∧ 𝐾 ≠ ∅) → (∀𝑟𝐾 (((𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉)) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ (((𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉)) ∧ ∀𝑟𝐾 (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥))))))
110107, 109bitrd 268 . . . . . . . . . . . . 13 ((𝑉 ≠ ∅ ∧ 𝐾 ≠ ∅) → (∀𝑟𝐾 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ (((𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉)) ∧ ∀𝑟𝐾 (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥))))))
111 anass 680 . . . . . . . . . . . . . 14 ((((𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉)) ∧ ∀𝑟𝐾 (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ ((𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ (((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ ∀𝑟𝐾 (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥))))))
112 anass 680 . . . . . . . . . . . . . . 15 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ ∀𝑟𝐾 (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ ((1 · 𝑥) = 𝑥 ∧ ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑟𝐾 (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥))))))
113112anbi2i 729 . . . . . . . . . . . . . 14 (((𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ (((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ ∀𝑟𝐾 (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥))))) ↔ ((𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((1 · 𝑥) = 𝑥 ∧ ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑟𝐾 (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))))))
114 ancom 466 . . . . . . . . . . . . . 14 (((𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((1 · 𝑥) = 𝑥 ∧ ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑟𝐾 (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))))) ↔ (((1 · 𝑥) = 𝑥 ∧ ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑟𝐾 (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥))))) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))))
115111, 113, 1143bitri 286 . . . . . . . . . . . . 13 ((((𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉)) ∧ ∀𝑟𝐾 (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ (((1 · 𝑥) = 𝑥 ∧ ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑟𝐾 (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥))))) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))))
116110, 115syl6bb 276 . . . . . . . . . . . 12 ((𝑉 ≠ ∅ ∧ 𝐾 ≠ ∅) → (∀𝑟𝐾 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ (((1 · 𝑥) = 𝑥 ∧ ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑟𝐾 (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥))))) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)))))
117116ralbidv 2985 . . . . . . . . . . 11 ((𝑉 ≠ ∅ ∧ 𝐾 ≠ ∅) → (∀𝑧𝑉𝑟𝐾 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ ∀𝑧𝑉 (((1 · 𝑥) = 𝑥 ∧ ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑟𝐾 (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥))))) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)))))
118 r19.28zv 4043 . . . . . . . . . . . 12 (𝑉 ≠ ∅ → (∀𝑧𝑉 (((1 · 𝑥) = 𝑥 ∧ ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑟𝐾 (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥))))) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ↔ (((1 · 𝑥) = 𝑥 ∧ ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑟𝐾 (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥))))) ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)))))
119118adantr 481 . . . . . . . . . . 11 ((𝑉 ≠ ∅ ∧ 𝐾 ≠ ∅) → (∀𝑧𝑉 (((1 · 𝑥) = 𝑥 ∧ ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑟𝐾 (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥))))) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ↔ (((1 · 𝑥) = 𝑥 ∧ ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑟𝐾 (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥))))) ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)))))
120117, 119bitrd 268 . . . . . . . . . 10 ((𝑉 ≠ ∅ ∧ 𝐾 ≠ ∅) → (∀𝑧𝑉𝑟𝐾 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ (((1 · 𝑥) = 𝑥 ∧ ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑟𝐾 (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥))))) ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)))))
121 anass 680 . . . . . . . . . . 11 ((((1 · 𝑥) = 𝑥 ∧ ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑟𝐾 (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥))))) ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ↔ ((1 · 𝑥) = 𝑥 ∧ (((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑟𝐾 (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)))))
122 oveq1 6612 . . . . . . . . . . . . . . . . . . 19 (𝑧 = 𝑟 → (𝑧 + 𝑦) = (𝑟 + 𝑦))
123122oveq1d 6620 . . . . . . . . . . . . . . . . . 18 (𝑧 = 𝑟 → ((𝑧 + 𝑦) · 𝑥) = ((𝑟 + 𝑦) · 𝑥))
124 oveq1 6612 . . . . . . . . . . . . . . . . . . 19 (𝑧 = 𝑟 → (𝑧 · 𝑥) = (𝑟 · 𝑥))
125124oveq1d 6620 . . . . . . . . . . . . . . . . . 18 (𝑧 = 𝑟 → ((𝑧 · 𝑥) + (𝑦 · 𝑥)) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)))
126123, 125eqeq12d 2641 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑟 → (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ↔ ((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))))
127 oveq1 6612 . . . . . . . . . . . . . . . . . . 19 (𝑧 = 𝑟 → (𝑧 · 𝑦) = (𝑟 · 𝑦))
128127oveq1d 6620 . . . . . . . . . . . . . . . . . 18 (𝑧 = 𝑟 → ((𝑧 · 𝑦) · 𝑥) = ((𝑟 · 𝑦) · 𝑥))
129 oveq1 6612 . . . . . . . . . . . . . . . . . 18 (𝑧 = 𝑟 → (𝑧 · (𝑦 · 𝑥)) = (𝑟 · (𝑦 · 𝑥)))
130128, 129eqeq12d 2641 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑟 → (((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)) ↔ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥))))
131126, 130anbi12d 746 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑟 → ((((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥))) ↔ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))))
132131cbvralv 3164 . . . . . . . . . . . . . . 15 (∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥))) ↔ ∀𝑟𝐾 (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥))))
1331323anbi3i 1253 . . . . . . . . . . . . . 14 (((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))) ↔ ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑟𝐾 (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))))
134 3anan32 1048 . . . . . . . . . . . . . 14 (((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑟𝐾 (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ (((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑟𝐾 (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))))
135133, 134bitri 264 . . . . . . . . . . . . 13 (((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))) ↔ (((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑟𝐾 (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))))
136135bicomi 214 . . . . . . . . . . . 12 ((((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑟𝐾 (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ↔ ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))))
137136anbi2i 729 . . . . . . . . . . 11 (((1 · 𝑥) = 𝑥 ∧ (((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑟𝐾 (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)))) ↔ ((1 · 𝑥) = 𝑥 ∧ ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥))))))
138121, 137bitri 264 . . . . . . . . . 10 ((((1 · 𝑥) = 𝑥 ∧ ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑟𝐾 (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥))))) ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ↔ ((1 · 𝑥) = 𝑥 ∧ ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥))))))
139120, 138syl6bb 276 . . . . . . . . 9 ((𝑉 ≠ ∅ ∧ 𝐾 ≠ ∅) → (∀𝑧𝑉𝑟𝐾 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ ((1 · 𝑥) = 𝑥 ∧ ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))))))
140139ralbidv 2985 . . . . . . . 8 ((𝑉 ≠ ∅ ∧ 𝐾 ≠ ∅) → (∀𝑦𝐾𝑧𝑉𝑟𝐾 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ ∀𝑦𝐾 ((1 · 𝑥) = 𝑥 ∧ ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))))))
141 r19.28zv 4043 . . . . . . . . 9 (𝐾 ≠ ∅ → (∀𝑦𝐾 ((1 · 𝑥) = 𝑥 ∧ ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥))))) ↔ ((1 · 𝑥) = 𝑥 ∧ ∀𝑦𝐾 ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))))))
142141adantl 482 . . . . . . . 8 ((𝑉 ≠ ∅ ∧ 𝐾 ≠ ∅) → (∀𝑦𝐾 ((1 · 𝑥) = 𝑥 ∧ ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥))))) ↔ ((1 · 𝑥) = 𝑥 ∧ ∀𝑦𝐾 ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))))))
143140, 142bitrd 268 . . . . . . 7 ((𝑉 ≠ ∅ ∧ 𝐾 ≠ ∅) → (∀𝑦𝐾𝑧𝑉𝑟𝐾 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ ((1 · 𝑥) = 𝑥 ∧ ∀𝑦𝐾 ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))))))
14499, 103, 143syl2anc 692 . . . . . 6 ((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → (∀𝑦𝐾𝑧𝑉𝑟𝐾 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ ((1 · 𝑥) = 𝑥 ∧ ∀𝑦𝐾 ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))))))
145144ralbidv 2985 . . . . 5 ((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → (∀𝑥𝑉𝑦𝐾𝑧𝑉𝑟𝐾 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ ∀𝑥𝑉 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦𝐾 ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))))))
14691, 97, 1453bitr3d 298 . . . 4 ((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → ((𝑆 ∈ Ring ∧ ∀𝑟𝐾𝑦𝐾𝑧𝑉𝑥𝑉 (((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))) ∧ (((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)) ∧ ((1r𝑆) · 𝑥) = 𝑥))) ↔ ∀𝑥𝑉 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦𝐾 ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))))))
147146pm5.32i 668 . . 3 (((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ (𝑆 ∈ Ring ∧ ∀𝑟𝐾𝑦𝐾𝑧𝑉𝑥𝑉 (((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))) ∧ (((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)) ∧ ((1r𝑆) · 𝑥) = 𝑥)))) ↔ ((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ ∀𝑥𝑉 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦𝐾 ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))))))
14823, 24, 1473bitri 286 . 2 ((((𝑊 ∈ Grp ∧ 𝑆 ∈ Ring) ∧ (𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld))) ∧ ∀𝑟𝐾𝑦𝐾𝑧𝑉𝑥𝑉 (((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))) ∧ (((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)) ∧ ((1r𝑆) · 𝑥) = 𝑥))) ↔ ((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ ∀𝑥𝑉 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦𝐾 ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))))))
1493, 17, 1483bitri 286 1 (𝑊 ∈ ℂMod ↔ ((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ ∀𝑥𝑉 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦𝐾 ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))))))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1992  wne 2796  wral 2912  c0 3896  cfv 5850  (class class class)co 6605  1c1 9882   + caddc 9884   · cmul 9886  Basecbs 15776  s cress 15777  +gcplusg 15857  .rcmulr 15858  Scalarcsca 15860   ·𝑠 cvsca 15861  Grpcgrp 17338  1rcur 18417  Ringcrg 18463  SubRingcsubrg 18692  LModclmod 18779  fldccnfld 19660  ℂModcclm 22765
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958  ax-addf 9960  ax-mulf 9961
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-1st 7116  df-2nd 7117  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-1o 7506  df-oadd 7510  df-er 7688  df-en 7901  df-dom 7902  df-sdom 7903  df-fin 7904  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-nn 10966  df-2 11024  df-3 11025  df-4 11026  df-5 11027  df-6 11028  df-7 11029  df-8 11030  df-9 11031  df-n0 11238  df-z 11323  df-dec 11438  df-uz 11632  df-fz 12266  df-struct 15778  df-ndx 15779  df-slot 15780  df-base 15781  df-sets 15782  df-ress 15783  df-plusg 15870  df-mulr 15871  df-starv 15872  df-tset 15876  df-ple 15877  df-ds 15880  df-unif 15881  df-0g 16018  df-mgm 17158  df-sgrp 17200  df-mnd 17211  df-grp 17341  df-subg 17507  df-cmn 18111  df-mgp 18406  df-ur 18418  df-ring 18465  df-cring 18466  df-subrg 18694  df-lmod 18781  df-cnfld 19661  df-clm 22766
This theorem is referenced by:  isclmi0  22801  iscvsp  22831
  Copyright terms: Public domain W3C validator