Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  isclmp Structured version   Visualization version   GIF version

Theorem isclmp 22943
 Description: The predicate "is a subcomplex module." (Contributed by NM, 31-May-2008.) (Revised by AV, 4-Oct-2021.)
Hypotheses
Ref Expression
isclmp.t · = ( ·𝑠𝑊)
isclmp.a + = (+g𝑊)
isclmp.v 𝑉 = (Base‘𝑊)
isclmp.s 𝑆 = (Scalar‘𝑊)
isclmp.k 𝐾 = (Base‘𝑆)
Assertion
Ref Expression
isclmp (𝑊 ∈ ℂMod ↔ ((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ ∀𝑥𝑉 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦𝐾 ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))))))
Distinct variable groups:   𝑥,𝐾,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝑥,𝑉,𝑦,𝑧   𝑥,𝑊,𝑦,𝑧   𝑥, + ,𝑦,𝑧   𝑥, · ,𝑦,𝑧

Proof of Theorem isclmp
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 isclmp.s . . 3 𝑆 = (Scalar‘𝑊)
2 isclmp.k . . 3 𝐾 = (Base‘𝑆)
31, 2isclm 22910 . 2 (𝑊 ∈ ℂMod ↔ (𝑊 ∈ LMod ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)))
4 isclmp.v . . . . 5 𝑉 = (Base‘𝑊)
5 isclmp.a . . . . 5 + = (+g𝑊)
6 isclmp.t . . . . 5 · = ( ·𝑠𝑊)
7 eqid 2651 . . . . 5 (+g𝑆) = (+g𝑆)
8 eqid 2651 . . . . 5 (.r𝑆) = (.r𝑆)
9 eqid 2651 . . . . 5 (1r𝑆) = (1r𝑆)
104, 5, 6, 1, 2, 7, 8, 9islmod 18915 . . . 4 (𝑊 ∈ LMod ↔ (𝑊 ∈ Grp ∧ 𝑆 ∈ Ring ∧ ∀𝑟𝐾𝑦𝐾𝑧𝑉𝑥𝑉 (((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))) ∧ (((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)) ∧ ((1r𝑆) · 𝑥) = 𝑥))))
11103anbi1i 1272 . . 3 ((𝑊 ∈ LMod ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ↔ ((𝑊 ∈ Grp ∧ 𝑆 ∈ Ring ∧ ∀𝑟𝐾𝑦𝐾𝑧𝑉𝑥𝑉 (((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))) ∧ (((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)) ∧ ((1r𝑆) · 𝑥) = 𝑥))) ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)))
12 3anass 1059 . . . 4 (((𝑊 ∈ Grp ∧ 𝑆 ∈ Ring ∧ ∀𝑟𝐾𝑦𝐾𝑧𝑉𝑥𝑉 (((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))) ∧ (((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)) ∧ ((1r𝑆) · 𝑥) = 𝑥))) ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ↔ ((𝑊 ∈ Grp ∧ 𝑆 ∈ Ring ∧ ∀𝑟𝐾𝑦𝐾𝑧𝑉𝑥𝑉 (((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))) ∧ (((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)) ∧ ((1r𝑆) · 𝑥) = 𝑥))) ∧ (𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld))))
13 df-3an 1056 . . . . 5 ((𝑊 ∈ Grp ∧ 𝑆 ∈ Ring ∧ ∀𝑟𝐾𝑦𝐾𝑧𝑉𝑥𝑉 (((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))) ∧ (((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)) ∧ ((1r𝑆) · 𝑥) = 𝑥))) ↔ ((𝑊 ∈ Grp ∧ 𝑆 ∈ Ring) ∧ ∀𝑟𝐾𝑦𝐾𝑧𝑉𝑥𝑉 (((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))) ∧ (((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)) ∧ ((1r𝑆) · 𝑥) = 𝑥))))
1413anbi1i 731 . . . 4 (((𝑊 ∈ Grp ∧ 𝑆 ∈ Ring ∧ ∀𝑟𝐾𝑦𝐾𝑧𝑉𝑥𝑉 (((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))) ∧ (((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)) ∧ ((1r𝑆) · 𝑥) = 𝑥))) ∧ (𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld))) ↔ (((𝑊 ∈ Grp ∧ 𝑆 ∈ Ring) ∧ ∀𝑟𝐾𝑦𝐾𝑧𝑉𝑥𝑉 (((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))) ∧ (((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)) ∧ ((1r𝑆) · 𝑥) = 𝑥))) ∧ (𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld))))
1512, 14bitri 264 . . 3 (((𝑊 ∈ Grp ∧ 𝑆 ∈ Ring ∧ ∀𝑟𝐾𝑦𝐾𝑧𝑉𝑥𝑉 (((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))) ∧ (((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)) ∧ ((1r𝑆) · 𝑥) = 𝑥))) ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ↔ (((𝑊 ∈ Grp ∧ 𝑆 ∈ Ring) ∧ ∀𝑟𝐾𝑦𝐾𝑧𝑉𝑥𝑉 (((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))) ∧ (((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)) ∧ ((1r𝑆) · 𝑥) = 𝑥))) ∧ (𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld))))
16 an32 856 . . 3 ((((𝑊 ∈ Grp ∧ 𝑆 ∈ Ring) ∧ ∀𝑟𝐾𝑦𝐾𝑧𝑉𝑥𝑉 (((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))) ∧ (((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)) ∧ ((1r𝑆) · 𝑥) = 𝑥))) ∧ (𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld))) ↔ (((𝑊 ∈ Grp ∧ 𝑆 ∈ Ring) ∧ (𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld))) ∧ ∀𝑟𝐾𝑦𝐾𝑧𝑉𝑥𝑉 (((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))) ∧ (((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)) ∧ ((1r𝑆) · 𝑥) = 𝑥))))
1711, 15, 163bitri 286 . 2 ((𝑊 ∈ LMod ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ↔ (((𝑊 ∈ Grp ∧ 𝑆 ∈ Ring) ∧ (𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld))) ∧ ∀𝑟𝐾𝑦𝐾𝑧𝑉𝑥𝑉 (((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))) ∧ (((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)) ∧ ((1r𝑆) · 𝑥) = 𝑥))))
18 an32 856 . . . . 5 (((𝑊 ∈ Grp ∧ 𝑆 ∈ Ring) ∧ (𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld))) ↔ ((𝑊 ∈ Grp ∧ (𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld))) ∧ 𝑆 ∈ Ring))
19 3anass 1059 . . . . . . 7 ((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ↔ (𝑊 ∈ Grp ∧ (𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld))))
2019bicomi 214 . . . . . 6 ((𝑊 ∈ Grp ∧ (𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld))) ↔ (𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)))
2120anbi1i 731 . . . . 5 (((𝑊 ∈ Grp ∧ (𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld))) ∧ 𝑆 ∈ Ring) ↔ ((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ 𝑆 ∈ Ring))
2218, 21bitri 264 . . . 4 (((𝑊 ∈ Grp ∧ 𝑆 ∈ Ring) ∧ (𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld))) ↔ ((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ 𝑆 ∈ Ring))
2322anbi1i 731 . . 3 ((((𝑊 ∈ Grp ∧ 𝑆 ∈ Ring) ∧ (𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld))) ∧ ∀𝑟𝐾𝑦𝐾𝑧𝑉𝑥𝑉 (((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))) ∧ (((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)) ∧ ((1r𝑆) · 𝑥) = 𝑥))) ↔ (((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ 𝑆 ∈ Ring) ∧ ∀𝑟𝐾𝑦𝐾𝑧𝑉𝑥𝑉 (((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))) ∧ (((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)) ∧ ((1r𝑆) · 𝑥) = 𝑥))))
24 anass 682 . . 3 ((((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ 𝑆 ∈ Ring) ∧ ∀𝑟𝐾𝑦𝐾𝑧𝑉𝑥𝑉 (((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))) ∧ (((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)) ∧ ((1r𝑆) · 𝑥) = 𝑥))) ↔ ((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ (𝑆 ∈ Ring ∧ ∀𝑟𝐾𝑦𝐾𝑧𝑉𝑥𝑉 (((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))) ∧ (((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)) ∧ ((1r𝑆) · 𝑥) = 𝑥)))))
25 df-3an 1056 . . . . . . . . . . 11 (((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))) ↔ (((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))))
26 ancom 465 . . . . . . . . . . 11 ((((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)) ∧ ((1r𝑆) · 𝑥) = 𝑥) ↔ (((1r𝑆) · 𝑥) = 𝑥 ∧ ((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥))))
2725, 26anbi12i 733 . . . . . . . . . 10 ((((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))) ∧ (((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)) ∧ ((1r𝑆) · 𝑥) = 𝑥)) ↔ ((((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))) ∧ (((1r𝑆) · 𝑥) = 𝑥 ∧ ((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))))
28 an4 882 . . . . . . . . . 10 (((((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))) ∧ (((1r𝑆) · 𝑥) = 𝑥 ∧ ((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ ((((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ ((1r𝑆) · 𝑥) = 𝑥) ∧ (((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))))
29 an32 856 . . . . . . . . . . . 12 ((((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ ((1r𝑆) · 𝑥) = 𝑥) ↔ (((𝑦 · 𝑥) ∈ 𝑉 ∧ ((1r𝑆) · 𝑥) = 𝑥) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))))
30 ancom 465 . . . . . . . . . . . . 13 (((𝑦 · 𝑥) ∈ 𝑉 ∧ ((1r𝑆) · 𝑥) = 𝑥) ↔ (((1r𝑆) · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉))
3130anbi1i 731 . . . . . . . . . . . 12 ((((𝑦 · 𝑥) ∈ 𝑉 ∧ ((1r𝑆) · 𝑥) = 𝑥) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ↔ ((((1r𝑆) · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))))
3229, 31bitri 264 . . . . . . . . . . 11 ((((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ ((1r𝑆) · 𝑥) = 𝑥) ↔ ((((1r𝑆) · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))))
3332anbi1i 731 . . . . . . . . . 10 (((((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ ((1r𝑆) · 𝑥) = 𝑥) ∧ (((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ (((((1r𝑆) · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))))
3427, 28, 333bitri 286 . . . . . . . . 9 ((((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))) ∧ (((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)) ∧ ((1r𝑆) · 𝑥) = 𝑥)) ↔ (((((1r𝑆) · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))))
35 fveq2 6229 . . . . . . . . . . . . . . . . . 18 (𝑆 = (ℂflds 𝐾) → (1r𝑆) = (1r‘(ℂflds 𝐾)))
36 eqid 2651 . . . . . . . . . . . . . . . . . . . 20 (ℂflds 𝐾) = (ℂflds 𝐾)
37 eqid 2651 . . . . . . . . . . . . . . . . . . . 20 (1r‘ℂfld) = (1r‘ℂfld)
3836, 37subrg1 18838 . . . . . . . . . . . . . . . . . . 19 (𝐾 ∈ (SubRing‘ℂfld) → (1r‘ℂfld) = (1r‘(ℂflds 𝐾)))
3938eqcomd 2657 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ (SubRing‘ℂfld) → (1r‘(ℂflds 𝐾)) = (1r‘ℂfld))
4035, 39sylan9eq 2705 . . . . . . . . . . . . . . . . 17 ((𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → (1r𝑆) = (1r‘ℂfld))
41 cnfld1 19819 . . . . . . . . . . . . . . . . 17 1 = (1r‘ℂfld)
4240, 41syl6eqr 2703 . . . . . . . . . . . . . . . 16 ((𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → (1r𝑆) = 1)
4342oveq1d 6705 . . . . . . . . . . . . . . 15 ((𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → ((1r𝑆) · 𝑥) = (1 · 𝑥))
4443eqeq1d 2653 . . . . . . . . . . . . . 14 ((𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → (((1r𝑆) · 𝑥) = 𝑥 ↔ (1 · 𝑥) = 𝑥))
45443adant1 1099 . . . . . . . . . . . . 13 ((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → (((1r𝑆) · 𝑥) = 𝑥 ↔ (1 · 𝑥) = 𝑥))
4645ad2antrr 762 . . . . . . . . . . . 12 ((((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ (𝑟𝐾𝑦𝐾)) ∧ (𝑧𝑉𝑥𝑉)) → (((1r𝑆) · 𝑥) = 𝑥 ↔ (1 · 𝑥) = 𝑥))
4746anbi1d 741 . . . . . . . . . . 11 ((((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ (𝑟𝐾𝑦𝐾)) ∧ (𝑧𝑉𝑥𝑉)) → ((((1r𝑆) · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ↔ ((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉)))
4847anbi1d 741 . . . . . . . . . 10 ((((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ (𝑟𝐾𝑦𝐾)) ∧ (𝑧𝑉𝑥𝑉)) → (((((1r𝑆) · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ↔ (((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)))))
49 eqid 2651 . . . . . . . . . . . . . . . . . . 19 (+g‘ℂfld) = (+g‘ℂfld)
5036, 49ressplusg 16040 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ (SubRing‘ℂfld) → (+g‘ℂfld) = (+g‘(ℂflds 𝐾)))
5150adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → (+g‘ℂfld) = (+g‘(ℂflds 𝐾)))
52 cnfldadd 19799 . . . . . . . . . . . . . . . . . 18 + = (+g‘ℂfld)
5352a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → + = (+g‘ℂfld))
54 fveq2 6229 . . . . . . . . . . . . . . . . . 18 (𝑆 = (ℂflds 𝐾) → (+g𝑆) = (+g‘(ℂflds 𝐾)))
5554adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → (+g𝑆) = (+g‘(ℂflds 𝐾)))
5651, 53, 553eqtr4rd 2696 . . . . . . . . . . . . . . . 16 ((𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → (+g𝑆) = + )
57563adant1 1099 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → (+g𝑆) = + )
5857oveqd 6707 . . . . . . . . . . . . . 14 ((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → (𝑟(+g𝑆)𝑦) = (𝑟 + 𝑦))
5958ad2antrr 762 . . . . . . . . . . . . 13 ((((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ (𝑟𝐾𝑦𝐾)) ∧ (𝑧𝑉𝑥𝑉)) → (𝑟(+g𝑆)𝑦) = (𝑟 + 𝑦))
6059oveq1d 6705 . . . . . . . . . . . 12 ((((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ (𝑟𝐾𝑦𝐾)) ∧ (𝑧𝑉𝑥𝑉)) → ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 + 𝑦) · 𝑥))
6160eqeq1d 2653 . . . . . . . . . . 11 ((((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ (𝑟𝐾𝑦𝐾)) ∧ (𝑧𝑉𝑥𝑉)) → (((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ↔ ((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))))
62 eqid 2651 . . . . . . . . . . . . . . . . . 18 (.r‘ℂfld) = (.r‘ℂfld)
6336, 62ressmulr 16053 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ (SubRing‘ℂfld) → (.r‘ℂfld) = (.r‘(ℂflds 𝐾)))
64633ad2ant3 1104 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → (.r‘ℂfld) = (.r‘(ℂflds 𝐾)))
65 cnfldmul 19800 . . . . . . . . . . . . . . . . 17 · = (.r‘ℂfld)
6665a1i 11 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → · = (.r‘ℂfld))
67 fveq2 6229 . . . . . . . . . . . . . . . . 17 (𝑆 = (ℂflds 𝐾) → (.r𝑆) = (.r‘(ℂflds 𝐾)))
68673ad2ant2 1103 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → (.r𝑆) = (.r‘(ℂflds 𝐾)))
6964, 66, 683eqtr4rd 2696 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → (.r𝑆) = · )
7069oveqd 6707 . . . . . . . . . . . . . 14 ((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → (𝑟(.r𝑆)𝑦) = (𝑟 · 𝑦))
7170ad2antrr 762 . . . . . . . . . . . . 13 ((((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ (𝑟𝐾𝑦𝐾)) ∧ (𝑧𝑉𝑥𝑉)) → (𝑟(.r𝑆)𝑦) = (𝑟 · 𝑦))
7271oveq1d 6705 . . . . . . . . . . . 12 ((((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ (𝑟𝐾𝑦𝐾)) ∧ (𝑧𝑉𝑥𝑉)) → ((𝑟(.r𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑦) · 𝑥))
7372eqeq1d 2653 . . . . . . . . . . 11 ((((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ (𝑟𝐾𝑦𝐾)) ∧ (𝑧𝑉𝑥𝑉)) → (((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)) ↔ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥))))
7461, 73anbi12d 747 . . . . . . . . . 10 ((((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ (𝑟𝐾𝑦𝐾)) ∧ (𝑧𝑉𝑥𝑉)) → ((((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥))) ↔ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))))
7548, 74anbi12d 747 . . . . . . . . 9 ((((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ (𝑟𝐾𝑦𝐾)) ∧ (𝑧𝑉𝑥𝑉)) → ((((((1r𝑆) · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥))))))
7634, 75syl5bb 272 . . . . . . . 8 ((((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ (𝑟𝐾𝑦𝐾)) ∧ (𝑧𝑉𝑥𝑉)) → ((((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))) ∧ (((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)) ∧ ((1r𝑆) · 𝑥) = 𝑥)) ↔ ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥))))))
77762ralbidva 3017 . . . . . . 7 (((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ (𝑟𝐾𝑦𝐾)) → (∀𝑧𝑉𝑥𝑉 (((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))) ∧ (((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)) ∧ ((1r𝑆) · 𝑥) = 𝑥)) ↔ ∀𝑧𝑉𝑥𝑉 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥))))))
78772ralbidva 3017 . . . . . 6 ((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → (∀𝑟𝐾𝑦𝐾𝑧𝑉𝑥𝑉 (((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))) ∧ (((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)) ∧ ((1r𝑆) · 𝑥) = 𝑥)) ↔ ∀𝑟𝐾𝑦𝐾𝑧𝑉𝑥𝑉 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥))))))
79 ralcom 3127 . . . . . . . . . . 11 (∀𝑧𝑉𝑥𝑉 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ ∀𝑥𝑉𝑧𝑉 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))))
8079ralbii 3009 . . . . . . . . . 10 (∀𝑦𝐾𝑧𝑉𝑥𝑉 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ ∀𝑦𝐾𝑥𝑉𝑧𝑉 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))))
81 ralcom 3127 . . . . . . . . . 10 (∀𝑦𝐾𝑥𝑉𝑧𝑉 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ ∀𝑥𝑉𝑦𝐾𝑧𝑉 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))))
8280, 81bitri 264 . . . . . . . . 9 (∀𝑦𝐾𝑧𝑉𝑥𝑉 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ ∀𝑥𝑉𝑦𝐾𝑧𝑉 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))))
8382ralbii 3009 . . . . . . . 8 (∀𝑟𝐾𝑦𝐾𝑧𝑉𝑥𝑉 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ ∀𝑟𝐾𝑥𝑉𝑦𝐾𝑧𝑉 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))))
84 ralcom 3127 . . . . . . . 8 (∀𝑟𝐾𝑥𝑉𝑦𝐾𝑧𝑉 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ ∀𝑥𝑉𝑟𝐾𝑦𝐾𝑧𝑉 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))))
8583, 84bitri 264 . . . . . . 7 (∀𝑟𝐾𝑦𝐾𝑧𝑉𝑥𝑉 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ ∀𝑥𝑉𝑟𝐾𝑦𝐾𝑧𝑉 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))))
86 ralcom 3127 . . . . . . . 8 (∀𝑟𝐾𝑦𝐾𝑧𝑉 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ ∀𝑦𝐾𝑟𝐾𝑧𝑉 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))))
8786ralbii 3009 . . . . . . 7 (∀𝑥𝑉𝑟𝐾𝑦𝐾𝑧𝑉 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ ∀𝑥𝑉𝑦𝐾𝑟𝐾𝑧𝑉 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))))
88 ralcom 3127 . . . . . . . 8 (∀𝑟𝐾𝑧𝑉 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ ∀𝑧𝑉𝑟𝐾 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))))
89882ralbii 3010 . . . . . . 7 (∀𝑥𝑉𝑦𝐾𝑟𝐾𝑧𝑉 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ ∀𝑥𝑉𝑦𝐾𝑧𝑉𝑟𝐾 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))))
9085, 87, 893bitri 286 . . . . . 6 (∀𝑟𝐾𝑦𝐾𝑧𝑉𝑥𝑉 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ ∀𝑥𝑉𝑦𝐾𝑧𝑉𝑟𝐾 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))))
9178, 90syl6bb 276 . . . . 5 ((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → (∀𝑟𝐾𝑦𝐾𝑧𝑉𝑥𝑉 (((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))) ∧ (((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)) ∧ ((1r𝑆) · 𝑥) = 𝑥)) ↔ ∀𝑥𝑉𝑦𝐾𝑧𝑉𝑟𝐾 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥))))))
9236subrgring 18831 . . . . . . . 8 (𝐾 ∈ (SubRing‘ℂfld) → (ℂflds 𝐾) ∈ Ring)
93923ad2ant3 1104 . . . . . . 7 ((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → (ℂflds 𝐾) ∈ Ring)
94 eleq1 2718 . . . . . . . 8 (𝑆 = (ℂflds 𝐾) → (𝑆 ∈ Ring ↔ (ℂflds 𝐾) ∈ Ring))
95943ad2ant2 1103 . . . . . . 7 ((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → (𝑆 ∈ Ring ↔ (ℂflds 𝐾) ∈ Ring))
9693, 95mpbird 247 . . . . . 6 ((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → 𝑆 ∈ Ring)
9796biantrurd 528 . . . . 5 ((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → (∀𝑟𝐾𝑦𝐾𝑧𝑉𝑥𝑉 (((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))) ∧ (((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)) ∧ ((1r𝑆) · 𝑥) = 𝑥)) ↔ (𝑆 ∈ Ring ∧ ∀𝑟𝐾𝑦𝐾𝑧𝑉𝑥𝑉 (((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))) ∧ (((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)) ∧ ((1r𝑆) · 𝑥) = 𝑥)))))
984grpbn0 17498 . . . . . . . 8 (𝑊 ∈ Grp → 𝑉 ≠ ∅)
99983ad2ant1 1102 . . . . . . 7 ((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → 𝑉 ≠ ∅)
10037subrg1cl 18836 . . . . . . . . 9 (𝐾 ∈ (SubRing‘ℂfld) → (1r‘ℂfld) ∈ 𝐾)
101 ne0i 3954 . . . . . . . . 9 ((1r‘ℂfld) ∈ 𝐾𝐾 ≠ ∅)
102100, 101syl 17 . . . . . . . 8 (𝐾 ∈ (SubRing‘ℂfld) → 𝐾 ≠ ∅)
1031023ad2ant3 1104 . . . . . . 7 ((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → 𝐾 ≠ ∅)
104 ancom 465 . . . . . . . . . . . . . . . . 17 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ↔ ((𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉)))
105104anbi1i 731 . . . . . . . . . . . . . . . 16 (((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ (((𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉)) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))))
106105a1i 11 . . . . . . . . . . . . . . 15 ((𝑉 ≠ ∅ ∧ 𝐾 ≠ ∅) → (((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ (((𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉)) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥))))))
107106ralbidv 3015 . . . . . . . . . . . . . 14 ((𝑉 ≠ ∅ ∧ 𝐾 ≠ ∅) → (∀𝑟𝐾 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ ∀𝑟𝐾 (((𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉)) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥))))))
108 r19.28zv 4099 . . . . . . . . . . . . . . 15 (𝐾 ≠ ∅ → (∀𝑟𝐾 (((𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉)) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ (((𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉)) ∧ ∀𝑟𝐾 (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥))))))
109108adantl 481 . . . . . . . . . . . . . 14 ((𝑉 ≠ ∅ ∧ 𝐾 ≠ ∅) → (∀𝑟𝐾 (((𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉)) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ (((𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉)) ∧ ∀𝑟𝐾 (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥))))))
110107, 109bitrd 268 . . . . . . . . . . . . 13 ((𝑉 ≠ ∅ ∧ 𝐾 ≠ ∅) → (∀𝑟𝐾 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ (((𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉)) ∧ ∀𝑟𝐾 (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥))))))
111 anass 682 . . . . . . . . . . . . . 14 ((((𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉)) ∧ ∀𝑟𝐾 (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ ((𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ (((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ ∀𝑟𝐾 (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥))))))
112 anass 682 . . . . . . . . . . . . . . 15 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ ∀𝑟𝐾 (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ ((1 · 𝑥) = 𝑥 ∧ ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑟𝐾 (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥))))))
113112anbi2i 730 . . . . . . . . . . . . . 14 (((𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ (((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ ∀𝑟𝐾 (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥))))) ↔ ((𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((1 · 𝑥) = 𝑥 ∧ ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑟𝐾 (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))))))
114 ancom 465 . . . . . . . . . . . . . 14 (((𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((1 · 𝑥) = 𝑥 ∧ ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑟𝐾 (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))))) ↔ (((1 · 𝑥) = 𝑥 ∧ ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑟𝐾 (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥))))) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))))
115111, 113, 1143bitri 286 . . . . . . . . . . . . 13 ((((𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉)) ∧ ∀𝑟𝐾 (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ (((1 · 𝑥) = 𝑥 ∧ ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑟𝐾 (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥))))) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))))
116110, 115syl6bb 276 . . . . . . . . . . . 12 ((𝑉 ≠ ∅ ∧ 𝐾 ≠ ∅) → (∀𝑟𝐾 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ (((1 · 𝑥) = 𝑥 ∧ ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑟𝐾 (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥))))) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)))))
117116ralbidv 3015 . . . . . . . . . . 11 ((𝑉 ≠ ∅ ∧ 𝐾 ≠ ∅) → (∀𝑧𝑉𝑟𝐾 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ ∀𝑧𝑉 (((1 · 𝑥) = 𝑥 ∧ ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑟𝐾 (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥))))) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)))))
118 r19.28zv 4099 . . . . . . . . . . . 12 (𝑉 ≠ ∅ → (∀𝑧𝑉 (((1 · 𝑥) = 𝑥 ∧ ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑟𝐾 (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥))))) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ↔ (((1 · 𝑥) = 𝑥 ∧ ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑟𝐾 (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥))))) ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)))))
119118adantr 480 . . . . . . . . . . 11 ((𝑉 ≠ ∅ ∧ 𝐾 ≠ ∅) → (∀𝑧𝑉 (((1 · 𝑥) = 𝑥 ∧ ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑟𝐾 (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥))))) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ↔ (((1 · 𝑥) = 𝑥 ∧ ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑟𝐾 (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥))))) ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)))))
120117, 119bitrd 268 . . . . . . . . . 10 ((𝑉 ≠ ∅ ∧ 𝐾 ≠ ∅) → (∀𝑧𝑉𝑟𝐾 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ (((1 · 𝑥) = 𝑥 ∧ ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑟𝐾 (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥))))) ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)))))
121 anass 682 . . . . . . . . . . 11 ((((1 · 𝑥) = 𝑥 ∧ ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑟𝐾 (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥))))) ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ↔ ((1 · 𝑥) = 𝑥 ∧ (((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑟𝐾 (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)))))
122 oveq1 6697 . . . . . . . . . . . . . . . . . . 19 (𝑧 = 𝑟 → (𝑧 + 𝑦) = (𝑟 + 𝑦))
123122oveq1d 6705 . . . . . . . . . . . . . . . . . 18 (𝑧 = 𝑟 → ((𝑧 + 𝑦) · 𝑥) = ((𝑟 + 𝑦) · 𝑥))
124 oveq1 6697 . . . . . . . . . . . . . . . . . . 19 (𝑧 = 𝑟 → (𝑧 · 𝑥) = (𝑟 · 𝑥))
125124oveq1d 6705 . . . . . . . . . . . . . . . . . 18 (𝑧 = 𝑟 → ((𝑧 · 𝑥) + (𝑦 · 𝑥)) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)))
126123, 125eqeq12d 2666 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑟 → (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ↔ ((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))))
127 oveq1 6697 . . . . . . . . . . . . . . . . . . 19 (𝑧 = 𝑟 → (𝑧 · 𝑦) = (𝑟 · 𝑦))
128127oveq1d 6705 . . . . . . . . . . . . . . . . . 18 (𝑧 = 𝑟 → ((𝑧 · 𝑦) · 𝑥) = ((𝑟 · 𝑦) · 𝑥))
129 oveq1 6697 . . . . . . . . . . . . . . . . . 18 (𝑧 = 𝑟 → (𝑧 · (𝑦 · 𝑥)) = (𝑟 · (𝑦 · 𝑥)))
130128, 129eqeq12d 2666 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑟 → (((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)) ↔ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥))))
131126, 130anbi12d 747 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑟 → ((((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥))) ↔ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))))
132131cbvralv 3201 . . . . . . . . . . . . . . 15 (∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥))) ↔ ∀𝑟𝐾 (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥))))
1331323anbi3i 1274 . . . . . . . . . . . . . 14 (((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))) ↔ ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑟𝐾 (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))))
134 3anan32 1068 . . . . . . . . . . . . . 14 (((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑟𝐾 (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ (((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑟𝐾 (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))))
135133, 134bitri 264 . . . . . . . . . . . . 13 (((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))) ↔ (((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑟𝐾 (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))))
136135bicomi 214 . . . . . . . . . . . 12 ((((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑟𝐾 (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ↔ ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))))
137136anbi2i 730 . . . . . . . . . . 11 (((1 · 𝑥) = 𝑥 ∧ (((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑟𝐾 (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)))) ↔ ((1 · 𝑥) = 𝑥 ∧ ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥))))))
138121, 137bitri 264 . . . . . . . . . 10 ((((1 · 𝑥) = 𝑥 ∧ ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑟𝐾 (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥))))) ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ↔ ((1 · 𝑥) = 𝑥 ∧ ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥))))))
139120, 138syl6bb 276 . . . . . . . . 9 ((𝑉 ≠ ∅ ∧ 𝐾 ≠ ∅) → (∀𝑧𝑉𝑟𝐾 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ ((1 · 𝑥) = 𝑥 ∧ ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))))))
140139ralbidv 3015 . . . . . . . 8 ((𝑉 ≠ ∅ ∧ 𝐾 ≠ ∅) → (∀𝑦𝐾𝑧𝑉𝑟𝐾 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ ∀𝑦𝐾 ((1 · 𝑥) = 𝑥 ∧ ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))))))
141 r19.28zv 4099 . . . . . . . . 9 (𝐾 ≠ ∅ → (∀𝑦𝐾 ((1 · 𝑥) = 𝑥 ∧ ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥))))) ↔ ((1 · 𝑥) = 𝑥 ∧ ∀𝑦𝐾 ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))))))
142141adantl 481 . . . . . . . 8 ((𝑉 ≠ ∅ ∧ 𝐾 ≠ ∅) → (∀𝑦𝐾 ((1 · 𝑥) = 𝑥 ∧ ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥))))) ↔ ((1 · 𝑥) = 𝑥 ∧ ∀𝑦𝐾 ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))))))
143140, 142bitrd 268 . . . . . . 7 ((𝑉 ≠ ∅ ∧ 𝐾 ≠ ∅) → (∀𝑦𝐾𝑧𝑉𝑟𝐾 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ ((1 · 𝑥) = 𝑥 ∧ ∀𝑦𝐾 ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))))))
14499, 103, 143syl2anc 694 . . . . . 6 ((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → (∀𝑦𝐾𝑧𝑉𝑟𝐾 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ ((1 · 𝑥) = 𝑥 ∧ ∀𝑦𝐾 ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))))))
145144ralbidv 3015 . . . . 5 ((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → (∀𝑥𝑉𝑦𝐾𝑧𝑉𝑟𝐾 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ ∀𝑥𝑉 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦𝐾 ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))))))
14691, 97, 1453bitr3d 298 . . . 4 ((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → ((𝑆 ∈ Ring ∧ ∀𝑟𝐾𝑦𝐾𝑧𝑉𝑥𝑉 (((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))) ∧ (((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)) ∧ ((1r𝑆) · 𝑥) = 𝑥))) ↔ ∀𝑥𝑉 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦𝐾 ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))))))
147146pm5.32i 670 . . 3 (((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ (𝑆 ∈ Ring ∧ ∀𝑟𝐾𝑦𝐾𝑧𝑉𝑥𝑉 (((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))) ∧ (((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)) ∧ ((1r𝑆) · 𝑥) = 𝑥)))) ↔ ((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ ∀𝑥𝑉 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦𝐾 ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))))))
14823, 24, 1473bitri 286 . 2 ((((𝑊 ∈ Grp ∧ 𝑆 ∈ Ring) ∧ (𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld))) ∧ ∀𝑟𝐾𝑦𝐾𝑧𝑉𝑥𝑉 (((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))) ∧ (((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)) ∧ ((1r𝑆) · 𝑥) = 𝑥))) ↔ ((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ ∀𝑥𝑉 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦𝐾 ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))))))
1493, 17, 1483bitri 286 1 (𝑊 ∈ ℂMod ↔ ((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ ∀𝑥𝑉 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦𝐾 ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))))))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 196   ∧ wa 383   ∧ w3a 1054   = wceq 1523   ∈ wcel 2030   ≠ wne 2823  ∀wral 2941  ∅c0 3948  ‘cfv 5926  (class class class)co 6690  1c1 9975   + caddc 9977   · cmul 9979  Basecbs 15904   ↾s cress 15905  +gcplusg 15988  .rcmulr 15989  Scalarcsca 15991   ·𝑠 cvsca 15992  Grpcgrp 17469  1rcur 18547  Ringcrg 18593  SubRingcsubrg 18824  LModclmod 18911  ℂfldccnfld 19794  ℂModcclm 22908 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-addf 10053  ax-mulf 10054 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-fz 12365  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-0g 16149  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-grp 17472  df-subg 17638  df-cmn 18241  df-mgp 18536  df-ur 18548  df-ring 18595  df-cring 18596  df-subrg 18826  df-lmod 18913  df-cnfld 19795  df-clm 22909 This theorem is referenced by:  isclmi0  22944  iscvsp  22974
 Copyright terms: Public domain W3C validator