Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itscnhlinecirc02plem1 Structured version   Visualization version   GIF version

Theorem itscnhlinecirc02plem1 44818
Description: Lemma 1 for itscnhlinecirc02p 44821. (Contributed by AV, 6-Mar-2023.)
Hypotheses
Ref Expression
2itscp.a (𝜑𝐴 ∈ ℝ)
2itscp.b (𝜑𝐵 ∈ ℝ)
2itscp.x (𝜑𝑋 ∈ ℝ)
2itscp.y (𝜑𝑌 ∈ ℝ)
2itscp.d 𝐷 = (𝑋𝐴)
2itscp.e 𝐸 = (𝐵𝑌)
2itscp.c 𝐶 = ((𝐷 · 𝐵) + (𝐸 · 𝐴))
2itscp.r (𝜑𝑅 ∈ ℝ)
2itscp.l (𝜑 → ((𝐴↑2) + (𝐵↑2)) < (𝑅↑2))
itscnhlinecirc02plem1.n (𝜑𝐵𝑌)
Assertion
Ref Expression
itscnhlinecirc02plem1 (𝜑 → 0 < ((-(2 · (𝐷 · 𝐶))↑2) − (4 · (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2)))))))

Proof of Theorem itscnhlinecirc02plem1
StepHypRef Expression
1 4re 11722 . . . . 5 4 ∈ ℝ
21a1i 11 . . . 4 (𝜑 → 4 ∈ ℝ)
3 2itscp.d . . . . . . . 8 𝐷 = (𝑋𝐴)
4 2itscp.x . . . . . . . . 9 (𝜑𝑋 ∈ ℝ)
5 2itscp.a . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
64, 5resubcld 11068 . . . . . . . 8 (𝜑 → (𝑋𝐴) ∈ ℝ)
73, 6eqeltrid 2917 . . . . . . 7 (𝜑𝐷 ∈ ℝ)
87resqcld 13612 . . . . . 6 (𝜑 → (𝐷↑2) ∈ ℝ)
9 2itscp.c . . . . . . . 8 𝐶 = ((𝐷 · 𝐵) + (𝐸 · 𝐴))
10 2itscp.b . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ)
117, 10remulcld 10671 . . . . . . . . 9 (𝜑 → (𝐷 · 𝐵) ∈ ℝ)
12 2itscp.e . . . . . . . . . . 11 𝐸 = (𝐵𝑌)
13 2itscp.y . . . . . . . . . . . 12 (𝜑𝑌 ∈ ℝ)
1410, 13resubcld 11068 . . . . . . . . . . 11 (𝜑 → (𝐵𝑌) ∈ ℝ)
1512, 14eqeltrid 2917 . . . . . . . . . 10 (𝜑𝐸 ∈ ℝ)
1615, 5remulcld 10671 . . . . . . . . 9 (𝜑 → (𝐸 · 𝐴) ∈ ℝ)
1711, 16readdcld 10670 . . . . . . . 8 (𝜑 → ((𝐷 · 𝐵) + (𝐸 · 𝐴)) ∈ ℝ)
189, 17eqeltrid 2917 . . . . . . 7 (𝜑𝐶 ∈ ℝ)
1918resqcld 13612 . . . . . 6 (𝜑 → (𝐶↑2) ∈ ℝ)
208, 19remulcld 10671 . . . . 5 (𝜑 → ((𝐷↑2) · (𝐶↑2)) ∈ ℝ)
2115resqcld 13612 . . . . . . 7 (𝜑 → (𝐸↑2) ∈ ℝ)
2221, 8readdcld 10670 . . . . . 6 (𝜑 → ((𝐸↑2) + (𝐷↑2)) ∈ ℝ)
23 2itscp.r . . . . . . . . 9 (𝜑𝑅 ∈ ℝ)
2423resqcld 13612 . . . . . . . 8 (𝜑 → (𝑅↑2) ∈ ℝ)
2521, 24remulcld 10671 . . . . . . 7 (𝜑 → ((𝐸↑2) · (𝑅↑2)) ∈ ℝ)
2619, 25resubcld 11068 . . . . . 6 (𝜑 → ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2))) ∈ ℝ)
2722, 26remulcld 10671 . . . . 5 (𝜑 → (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2)))) ∈ ℝ)
2820, 27resubcld 11068 . . . 4 (𝜑 → (((𝐷↑2) · (𝐶↑2)) − (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2))))) ∈ ℝ)
29 4pos 11745 . . . . 5 0 < 4
3029a1i 11 . . . 4 (𝜑 → 0 < 4)
318, 24remulcld 10671 . . . . . . . . 9 (𝜑 → ((𝐷↑2) · (𝑅↑2)) ∈ ℝ)
3225, 31readdcld 10670 . . . . . . . 8 (𝜑 → (((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) ∈ ℝ)
3332, 19resubcld 11068 . . . . . . 7 (𝜑 → ((((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) − (𝐶↑2)) ∈ ℝ)
3412a1i 11 . . . . . . . . 9 (𝜑𝐸 = (𝐵𝑌))
3510recnd 10669 . . . . . . . . . 10 (𝜑𝐵 ∈ ℂ)
3613recnd 10669 . . . . . . . . . 10 (𝜑𝑌 ∈ ℂ)
37 itscnhlinecirc02plem1.n . . . . . . . . . 10 (𝜑𝐵𝑌)
3835, 36, 37subne0d 11006 . . . . . . . . 9 (𝜑 → (𝐵𝑌) ≠ 0)
3934, 38eqnetrd 3083 . . . . . . . 8 (𝜑𝐸 ≠ 0)
4015, 39sqgt0d 13614 . . . . . . 7 (𝜑 → 0 < (𝐸↑2))
41 2itscp.l . . . . . . . . 9 (𝜑 → ((𝐴↑2) + (𝐵↑2)) < (𝑅↑2))
4237orcd 869 . . . . . . . . 9 (𝜑 → (𝐵𝑌𝐴𝑋))
43 eqid 2821 . . . . . . . . 9 ((𝐸↑2) + (𝐷↑2)) = ((𝐸↑2) + (𝐷↑2))
44 eqid 2821 . . . . . . . . 9 (((𝑅↑2) · ((𝐸↑2) + (𝐷↑2))) − (𝐶↑2)) = (((𝑅↑2) · ((𝐸↑2) + (𝐷↑2))) − (𝐶↑2))
455, 10, 4, 13, 3, 12, 9, 23, 41, 42, 43, 442itscp 44817 . . . . . . . 8 (𝜑 → 0 < (((𝑅↑2) · ((𝐸↑2) + (𝐷↑2))) − (𝐶↑2)))
4621recnd 10669 . . . . . . . . . . 11 (𝜑 → (𝐸↑2) ∈ ℂ)
478recnd 10669 . . . . . . . . . . 11 (𝜑 → (𝐷↑2) ∈ ℂ)
4824recnd 10669 . . . . . . . . . . 11 (𝜑 → (𝑅↑2) ∈ ℂ)
4946, 47, 48adddird 10666 . . . . . . . . . 10 (𝜑 → (((𝐸↑2) + (𝐷↑2)) · (𝑅↑2)) = (((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))))
5046, 47addcld 10660 . . . . . . . . . . 11 (𝜑 → ((𝐸↑2) + (𝐷↑2)) ∈ ℂ)
5150, 48mulcomd 10662 . . . . . . . . . 10 (𝜑 → (((𝐸↑2) + (𝐷↑2)) · (𝑅↑2)) = ((𝑅↑2) · ((𝐸↑2) + (𝐷↑2))))
5249, 51eqtr3d 2858 . . . . . . . . 9 (𝜑 → (((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) = ((𝑅↑2) · ((𝐸↑2) + (𝐷↑2))))
5352oveq1d 7171 . . . . . . . 8 (𝜑 → ((((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) − (𝐶↑2)) = (((𝑅↑2) · ((𝐸↑2) + (𝐷↑2))) − (𝐶↑2)))
5445, 53breqtrrd 5094 . . . . . . 7 (𝜑 → 0 < ((((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) − (𝐶↑2)))
5521, 33, 40, 54mulgt0d 10795 . . . . . 6 (𝜑 → 0 < ((𝐸↑2) · ((((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) − (𝐶↑2))))
5647, 46, 48mul12d 10849 . . . . . . . . . 10 (𝜑 → ((𝐷↑2) · ((𝐸↑2) · (𝑅↑2))) = ((𝐸↑2) · ((𝐷↑2) · (𝑅↑2))))
5756oveq2d 7172 . . . . . . . . 9 (𝜑 → (((𝐸↑2) · ((𝐸↑2) · (𝑅↑2))) + ((𝐷↑2) · ((𝐸↑2) · (𝑅↑2)))) = (((𝐸↑2) · ((𝐸↑2) · (𝑅↑2))) + ((𝐸↑2) · ((𝐷↑2) · (𝑅↑2)))))
5846, 48mulcld 10661 . . . . . . . . . 10 (𝜑 → ((𝐸↑2) · (𝑅↑2)) ∈ ℂ)
5947, 48mulcld 10661 . . . . . . . . . 10 (𝜑 → ((𝐷↑2) · (𝑅↑2)) ∈ ℂ)
6046, 58, 59adddid 10665 . . . . . . . . 9 (𝜑 → ((𝐸↑2) · (((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2)))) = (((𝐸↑2) · ((𝐸↑2) · (𝑅↑2))) + ((𝐸↑2) · ((𝐷↑2) · (𝑅↑2)))))
6157, 60eqtr4d 2859 . . . . . . . 8 (𝜑 → (((𝐸↑2) · ((𝐸↑2) · (𝑅↑2))) + ((𝐷↑2) · ((𝐸↑2) · (𝑅↑2)))) = ((𝐸↑2) · (((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2)))))
6261oveq1d 7171 . . . . . . 7 (𝜑 → ((((𝐸↑2) · ((𝐸↑2) · (𝑅↑2))) + ((𝐷↑2) · ((𝐸↑2) · (𝑅↑2)))) − ((𝐸↑2) · (𝐶↑2))) = (((𝐸↑2) · (((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2)))) − ((𝐸↑2) · (𝐶↑2))))
6358, 59addcld 10660 . . . . . . . 8 (𝜑 → (((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) ∈ ℂ)
6419recnd 10669 . . . . . . . 8 (𝜑 → (𝐶↑2) ∈ ℂ)
6546, 63, 64subdid 11096 . . . . . . 7 (𝜑 → ((𝐸↑2) · ((((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) − (𝐶↑2))) = (((𝐸↑2) · (((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2)))) − ((𝐸↑2) · (𝐶↑2))))
6662, 65eqtr4d 2859 . . . . . 6 (𝜑 → ((((𝐸↑2) · ((𝐸↑2) · (𝑅↑2))) + ((𝐷↑2) · ((𝐸↑2) · (𝑅↑2)))) − ((𝐸↑2) · (𝐶↑2))) = ((𝐸↑2) · ((((𝐸↑2) · (𝑅↑2)) + ((𝐷↑2) · (𝑅↑2))) − (𝐶↑2))))
6755, 66breqtrrd 5094 . . . . 5 (𝜑 → 0 < ((((𝐸↑2) · ((𝐸↑2) · (𝑅↑2))) + ((𝐷↑2) · ((𝐸↑2) · (𝑅↑2)))) − ((𝐸↑2) · (𝐶↑2))))
6815recnd 10669 . . . . . . 7 (𝜑𝐸 ∈ ℂ)
6968sqcld 13509 . . . . . 6 (𝜑 → (𝐸↑2) ∈ ℂ)
707recnd 10669 . . . . . . 7 (𝜑𝐷 ∈ ℂ)
7170sqcld 13509 . . . . . 6 (𝜑 → (𝐷↑2) ∈ ℂ)
7225recnd 10669 . . . . . 6 (𝜑 → ((𝐸↑2) · (𝑅↑2)) ∈ ℂ)
73 mulsubaddmulsub 11104 . . . . . 6 ((((𝐸↑2) ∈ ℂ ∧ (𝐷↑2) ∈ ℂ) ∧ ((𝐶↑2) ∈ ℂ ∧ ((𝐸↑2) · (𝑅↑2)) ∈ ℂ)) → (((𝐷↑2) · (𝐶↑2)) − (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2))))) = ((((𝐸↑2) · ((𝐸↑2) · (𝑅↑2))) + ((𝐷↑2) · ((𝐸↑2) · (𝑅↑2)))) − ((𝐸↑2) · (𝐶↑2))))
7469, 71, 64, 72, 73syl22anc 836 . . . . 5 (𝜑 → (((𝐷↑2) · (𝐶↑2)) − (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2))))) = ((((𝐸↑2) · ((𝐸↑2) · (𝑅↑2))) + ((𝐷↑2) · ((𝐸↑2) · (𝑅↑2)))) − ((𝐸↑2) · (𝐶↑2))))
7567, 74breqtrrd 5094 . . . 4 (𝜑 → 0 < (((𝐷↑2) · (𝐶↑2)) − (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2))))))
762, 28, 30, 75mulgt0d 10795 . . 3 (𝜑 → 0 < (4 · (((𝐷↑2) · (𝐶↑2)) − (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2)))))))
77 4cn 11723 . . . . 5 4 ∈ ℂ
7877a1i 11 . . . 4 (𝜑 → 4 ∈ ℂ)
7918recnd 10669 . . . . . 6 (𝜑𝐶 ∈ ℂ)
8079sqcld 13509 . . . . 5 (𝜑 → (𝐶↑2) ∈ ℂ)
8171, 80mulcld 10661 . . . 4 (𝜑 → ((𝐷↑2) · (𝐶↑2)) ∈ ℂ)
8269, 71addcld 10660 . . . . 5 (𝜑 → ((𝐸↑2) + (𝐷↑2)) ∈ ℂ)
8323recnd 10669 . . . . . . . 8 (𝜑𝑅 ∈ ℂ)
8483sqcld 13509 . . . . . . 7 (𝜑 → (𝑅↑2) ∈ ℂ)
8569, 84mulcld 10661 . . . . . 6 (𝜑 → ((𝐸↑2) · (𝑅↑2)) ∈ ℂ)
8680, 85subcld 10997 . . . . 5 (𝜑 → ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2))) ∈ ℂ)
8782, 86mulcld 10661 . . . 4 (𝜑 → (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2)))) ∈ ℂ)
8878, 81, 87subdid 11096 . . 3 (𝜑 → (4 · (((𝐷↑2) · (𝐶↑2)) − (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2)))))) = ((4 · ((𝐷↑2) · (𝐶↑2))) − (4 · (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2)))))))
8976, 88breqtrd 5092 . 2 (𝜑 → 0 < ((4 · ((𝐷↑2) · (𝐶↑2))) − (4 · (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2)))))))
90 2cnd 11716 . . . . . 6 (𝜑 → 2 ∈ ℂ)
9170, 79mulcld 10661 . . . . . 6 (𝜑 → (𝐷 · 𝐶) ∈ ℂ)
9290, 91mulcld 10661 . . . . 5 (𝜑 → (2 · (𝐷 · 𝐶)) ∈ ℂ)
93 sqneg 13483 . . . . 5 ((2 · (𝐷 · 𝐶)) ∈ ℂ → (-(2 · (𝐷 · 𝐶))↑2) = ((2 · (𝐷 · 𝐶))↑2))
9492, 93syl 17 . . . 4 (𝜑 → (-(2 · (𝐷 · 𝐶))↑2) = ((2 · (𝐷 · 𝐶))↑2))
9590, 91sqmuld 13523 . . . 4 (𝜑 → ((2 · (𝐷 · 𝐶))↑2) = ((2↑2) · ((𝐷 · 𝐶)↑2)))
96 sq2 13561 . . . . . 6 (2↑2) = 4
9796a1i 11 . . . . 5 (𝜑 → (2↑2) = 4)
9870, 79sqmuld 13523 . . . . 5 (𝜑 → ((𝐷 · 𝐶)↑2) = ((𝐷↑2) · (𝐶↑2)))
9997, 98oveq12d 7174 . . . 4 (𝜑 → ((2↑2) · ((𝐷 · 𝐶)↑2)) = (4 · ((𝐷↑2) · (𝐶↑2))))
10094, 95, 993eqtrd 2860 . . 3 (𝜑 → (-(2 · (𝐷 · 𝐶))↑2) = (4 · ((𝐷↑2) · (𝐶↑2))))
101100oveq1d 7171 . 2 (𝜑 → ((-(2 · (𝐷 · 𝐶))↑2) − (4 · (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2)))))) = ((4 · ((𝐷↑2) · (𝐶↑2))) − (4 · (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2)))))))
10289, 101breqtrrd 5094 1 (𝜑 → 0 < ((-(2 · (𝐷 · 𝐶))↑2) − (4 · (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2)))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2114  wne 3016   class class class wbr 5066  (class class class)co 7156  cc 10535  cr 10536  0cc0 10537   + caddc 10540   · cmul 10542   < clt 10675  cmin 10870  -cneg 10871  2c2 11693  4c4 11695  cexp 13430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-seq 13371  df-exp 13431
This theorem is referenced by:  itscnhlinecirc02plem2  44819
  Copyright terms: Public domain W3C validator