Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iunhoiioo Structured version   Visualization version   GIF version

Theorem iunhoiioo 39364
Description: A n-dimensional open interval expressed as the indexed union of half-open intervals. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
iunhoiioo.k 𝑘𝜑
iunhoiioo.x (𝜑𝑋 ∈ Fin)
iunhoiioo.a ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ)
iunhoiioo.b ((𝜑𝑘𝑋) → 𝐵 ∈ ℝ*)
Assertion
Ref Expression
iunhoiioo (𝜑 𝑛 ∈ ℕ X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) = X𝑘𝑋 (𝐴(,)𝐵))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝑘,𝑋,𝑛   𝜑,𝑛
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐵(𝑘)

Proof of Theorem iunhoiioo
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 nnn0 38333 . . . . . 6 ℕ ≠ ∅
2 iunconst 4459 . . . . . 6 (ℕ ≠ ∅ → 𝑛 ∈ ℕ {∅} = {∅})
31, 2ax-mp 5 . . . . 5 𝑛 ∈ ℕ {∅} = {∅}
43a1i 11 . . . 4 (𝑋 = ∅ → 𝑛 ∈ ℕ {∅} = {∅})
5 ixpeq1 7782 . . . . . . 7 (𝑋 = ∅ → X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) = X𝑘 ∈ ∅ ((𝐴 + (1 / 𝑛))[,)𝐵))
6 ixp0x 7799 . . . . . . . 8 X𝑘 ∈ ∅ ((𝐴 + (1 / 𝑛))[,)𝐵) = {∅}
76a1i 11 . . . . . . 7 (𝑋 = ∅ → X𝑘 ∈ ∅ ((𝐴 + (1 / 𝑛))[,)𝐵) = {∅})
85, 7eqtrd 2643 . . . . . 6 (𝑋 = ∅ → X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) = {∅})
98adantr 479 . . . . 5 ((𝑋 = ∅ ∧ 𝑛 ∈ ℕ) → X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) = {∅})
109iuneq2dv 4472 . . . 4 (𝑋 = ∅ → 𝑛 ∈ ℕ X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) = 𝑛 ∈ ℕ {∅})
11 ixpeq1 7782 . . . . 5 (𝑋 = ∅ → X𝑘𝑋 (𝐴(,)𝐵) = X𝑘 ∈ ∅ (𝐴(,)𝐵))
12 ixp0x 7799 . . . . . 6 X𝑘 ∈ ∅ (𝐴(,)𝐵) = {∅}
1312a1i 11 . . . . 5 (𝑋 = ∅ → X𝑘 ∈ ∅ (𝐴(,)𝐵) = {∅})
1411, 13eqtrd 2643 . . . 4 (𝑋 = ∅ → X𝑘𝑋 (𝐴(,)𝐵) = {∅})
154, 10, 143eqtr4d 2653 . . 3 (𝑋 = ∅ → 𝑛 ∈ ℕ X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) = X𝑘𝑋 (𝐴(,)𝐵))
1615adantl 480 . 2 ((𝜑𝑋 = ∅) → 𝑛 ∈ ℕ X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) = X𝑘𝑋 (𝐴(,)𝐵))
17 iunhoiioo.k . . . . . . . 8 𝑘𝜑
18 nfv 1829 . . . . . . . 8 𝑘 𝑛 ∈ ℕ
1917, 18nfan 1815 . . . . . . 7 𝑘(𝜑𝑛 ∈ ℕ)
20 iunhoiioo.a . . . . . . . . . 10 ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ)
2120rexrd 9945 . . . . . . . . 9 ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ*)
2221adantlr 746 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → 𝐴 ∈ ℝ*)
23 iunhoiioo.b . . . . . . . . 9 ((𝜑𝑘𝑋) → 𝐵 ∈ ℝ*)
2423adantlr 746 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → 𝐵 ∈ ℝ*)
2520adantlr 746 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → 𝐴 ∈ ℝ)
26 nnrp 11674 . . . . . . . . . . 11 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
2726ad2antlr 758 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → 𝑛 ∈ ℝ+)
2827rpreccld 11714 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (1 / 𝑛) ∈ ℝ+)
2925, 28ltaddrpd 11737 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → 𝐴 < (𝐴 + (1 / 𝑛)))
30 xrleid 11818 . . . . . . . . . 10 (𝐵 ∈ ℝ*𝐵𝐵)
3123, 30syl 17 . . . . . . . . 9 ((𝜑𝑘𝑋) → 𝐵𝐵)
3231adantlr 746 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → 𝐵𝐵)
33 icossioo 12091 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < (𝐴 + (1 / 𝑛)) ∧ 𝐵𝐵)) → ((𝐴 + (1 / 𝑛))[,)𝐵) ⊆ (𝐴(,)𝐵))
3422, 24, 29, 32, 33syl22anc 1318 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐴 + (1 / 𝑛))[,)𝐵) ⊆ (𝐴(,)𝐵))
3519, 34ixpssixp 38093 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) ⊆ X𝑘𝑋 (𝐴(,)𝐵))
3635ralrimiva 2948 . . . . 5 (𝜑 → ∀𝑛 ∈ ℕ X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) ⊆ X𝑘𝑋 (𝐴(,)𝐵))
37 iunss 4491 . . . . 5 ( 𝑛 ∈ ℕ X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) ⊆ X𝑘𝑋 (𝐴(,)𝐵) ↔ ∀𝑛 ∈ ℕ X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) ⊆ X𝑘𝑋 (𝐴(,)𝐵))
3836, 37sylibr 222 . . . 4 (𝜑 𝑛 ∈ ℕ X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) ⊆ X𝑘𝑋 (𝐴(,)𝐵))
3938adantr 479 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑛 ∈ ℕ X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) ⊆ X𝑘𝑋 (𝐴(,)𝐵))
40 nfv 1829 . . . . . . . 8 𝑘 ¬ 𝑋 = ∅
4117, 40nfan 1815 . . . . . . 7 𝑘(𝜑 ∧ ¬ 𝑋 = ∅)
42 nfcv 2750 . . . . . . . 8 𝑘𝑓
43 nfixp1 7791 . . . . . . . 8 𝑘X𝑘𝑋 (𝐴(,)𝐵)
4442, 43nfel 2762 . . . . . . 7 𝑘 𝑓X𝑘𝑋 (𝐴(,)𝐵)
4541, 44nfan 1815 . . . . . 6 𝑘((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑓X𝑘𝑋 (𝐴(,)𝐵))
46 iunhoiioo.x . . . . . . 7 (𝜑𝑋 ∈ Fin)
4746ad2antrr 757 . . . . . 6 (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑓X𝑘𝑋 (𝐴(,)𝐵)) → 𝑋 ∈ Fin)
48 neqne 2789 . . . . . . 7 𝑋 = ∅ → 𝑋 ≠ ∅)
4948ad2antlr 758 . . . . . 6 (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑓X𝑘𝑋 (𝐴(,)𝐵)) → 𝑋 ≠ ∅)
5020ad4ant14 1284 . . . . . 6 ((((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑓X𝑘𝑋 (𝐴(,)𝐵)) ∧ 𝑘𝑋) → 𝐴 ∈ ℝ)
5123ad4ant14 1284 . . . . . 6 ((((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑓X𝑘𝑋 (𝐴(,)𝐵)) ∧ 𝑘𝑋) → 𝐵 ∈ ℝ*)
52 simpr 475 . . . . . 6 (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑓X𝑘𝑋 (𝐴(,)𝐵)) → 𝑓X𝑘𝑋 (𝐴(,)𝐵))
53 eqid 2609 . . . . . 6 inf(ran (𝑘𝑋 ↦ ((𝑓𝑘) − 𝐴)), ℝ, < ) = inf(ran (𝑘𝑋 ↦ ((𝑓𝑘) − 𝐴)), ℝ, < )
5445, 47, 49, 50, 51, 52, 53iunhoiioolem 39363 . . . . 5 (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑓X𝑘𝑋 (𝐴(,)𝐵)) → 𝑓 𝑛 ∈ ℕ X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵))
5554ralrimiva 2948 . . . 4 ((𝜑 ∧ ¬ 𝑋 = ∅) → ∀𝑓X 𝑘𝑋 (𝐴(,)𝐵)𝑓 𝑛 ∈ ℕ X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵))
56 dfss3 3557 . . . 4 (X𝑘𝑋 (𝐴(,)𝐵) ⊆ 𝑛 ∈ ℕ X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) ↔ ∀𝑓X 𝑘𝑋 (𝐴(,)𝐵)𝑓 𝑛 ∈ ℕ X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵))
5755, 56sylibr 222 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → X𝑘𝑋 (𝐴(,)𝐵) ⊆ 𝑛 ∈ ℕ X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵))
5839, 57eqssd 3584 . 2 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑛 ∈ ℕ X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) = X𝑘𝑋 (𝐴(,)𝐵))
5916, 58pm2.61dan 827 1 (𝜑 𝑛 ∈ ℕ X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) = X𝑘𝑋 (𝐴(,)𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 382   = wceq 1474  wnf 1698  wcel 1976  wne 2779  wral 2895  wss 3539  c0 3873  {csn 4124   ciun 4449   class class class wbr 4577  cmpt 4637  ran crn 5029  cfv 5790  (class class class)co 6527  Xcixp 7771  Fincfn 7818  infcinf 8207  cr 9791  1c1 9793   + caddc 9795  *cxr 9929   < clt 9930  cle 9931  cmin 10117   / cdiv 10533  cn 10867  +crp 11664  (,)cioo 12002  [,)cico 12004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869  ax-pre-sup 9870
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6935  df-1st 7036  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-oadd 7428  df-er 7606  df-ixp 7772  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-sup 8208  df-inf 8209  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10534  df-nn 10868  df-n0 11140  df-z 11211  df-uz 11520  df-rp 11665  df-ioo 12006  df-ico 12008  df-fl 12410
This theorem is referenced by:  vonioolem2  39369
  Copyright terms: Public domain W3C validator