Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  kerunit Structured version   Visualization version   GIF version

Theorem kerunit 30917
Description: If a unit element lies in the kernel of a ring homomorphism, then 0 = 1, i.e. the target ring is the zero ring. (Contributed by Thierry Arnoux, 24-Oct-2017.)
Hypotheses
Ref Expression
kerunit.1 𝑈 = (Unit‘𝑅)
kerunit.2 0 = (0g𝑆)
kerunit.3 1 = (1r𝑆)
Assertion
Ref Expression
kerunit ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑈 ∩ (𝐹 “ { 0 })) ≠ ∅) → 1 = 0 )

Proof of Theorem kerunit
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elin 4162 . . . . . . . 8 (𝑥 ∈ (𝑈 ∩ (𝐹 “ { 0 })) ↔ (𝑥𝑈𝑥 ∈ (𝐹 “ { 0 })))
21biimpi 218 . . . . . . 7 (𝑥 ∈ (𝑈 ∩ (𝐹 “ { 0 })) → (𝑥𝑈𝑥 ∈ (𝐹 “ { 0 })))
32adantl 484 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (𝐹 “ { 0 }))) → (𝑥𝑈𝑥 ∈ (𝐹 “ { 0 })))
43simpld 497 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (𝐹 “ { 0 }))) → 𝑥𝑈)
5 rhmrcl1 19466 . . . . . 6 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring)
6 kerunit.1 . . . . . . . 8 𝑈 = (Unit‘𝑅)
7 eqid 2820 . . . . . . . 8 (invr𝑅) = (invr𝑅)
8 eqid 2820 . . . . . . . 8 (.r𝑅) = (.r𝑅)
9 eqid 2820 . . . . . . . 8 (1r𝑅) = (1r𝑅)
106, 7, 8, 9unitlinv 19422 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → (((invr𝑅)‘𝑥)(.r𝑅)𝑥) = (1r𝑅))
1110fveq2d 6667 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → (𝐹‘(((invr𝑅)‘𝑥)(.r𝑅)𝑥)) = (𝐹‘(1r𝑅)))
125, 11sylan 582 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥𝑈) → (𝐹‘(((invr𝑅)‘𝑥)(.r𝑅)𝑥)) = (𝐹‘(1r𝑅)))
134, 12syldan 593 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (𝐹 “ { 0 }))) → (𝐹‘(((invr𝑅)‘𝑥)(.r𝑅)𝑥)) = (𝐹‘(1r𝑅)))
14 simpl 485 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (𝐹 “ { 0 }))) → 𝐹 ∈ (𝑅 RingHom 𝑆))
155adantr 483 . . . . . . 7 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (𝐹 “ { 0 }))) → 𝑅 ∈ Ring)
16 eqid 2820 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
176, 7, 16ringinvcl 19421 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → ((invr𝑅)‘𝑥) ∈ (Base‘𝑅))
1815, 4, 17syl2anc 586 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (𝐹 “ { 0 }))) → ((invr𝑅)‘𝑥) ∈ (Base‘𝑅))
1916, 6unitcl 19404 . . . . . . 7 (𝑥𝑈𝑥 ∈ (Base‘𝑅))
204, 19syl 17 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (𝐹 “ { 0 }))) → 𝑥 ∈ (Base‘𝑅))
21 eqid 2820 . . . . . . 7 (.r𝑆) = (.r𝑆)
2216, 8, 21rhmmul 19474 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ((invr𝑅)‘𝑥) ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝐹‘(((invr𝑅)‘𝑥)(.r𝑅)𝑥)) = ((𝐹‘((invr𝑅)‘𝑥))(.r𝑆)(𝐹𝑥)))
2314, 18, 20, 22syl3anc 1366 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (𝐹 “ { 0 }))) → (𝐹‘(((invr𝑅)‘𝑥)(.r𝑅)𝑥)) = ((𝐹‘((invr𝑅)‘𝑥))(.r𝑆)(𝐹𝑥)))
243simprd 498 . . . . . . . 8 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (𝐹 “ { 0 }))) → 𝑥 ∈ (𝐹 “ { 0 }))
25 eqid 2820 . . . . . . . . . . 11 (Base‘𝑆) = (Base‘𝑆)
2616, 25rhmf 19473 . . . . . . . . . 10 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹:(Base‘𝑅)⟶(Base‘𝑆))
27 ffn 6507 . . . . . . . . . 10 (𝐹:(Base‘𝑅)⟶(Base‘𝑆) → 𝐹 Fn (Base‘𝑅))
28 elpreima 6821 . . . . . . . . . 10 (𝐹 Fn (Base‘𝑅) → (𝑥 ∈ (𝐹 “ { 0 }) ↔ (𝑥 ∈ (Base‘𝑅) ∧ (𝐹𝑥) ∈ { 0 })))
2926, 27, 283syl 18 . . . . . . . . 9 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝑥 ∈ (𝐹 “ { 0 }) ↔ (𝑥 ∈ (Base‘𝑅) ∧ (𝐹𝑥) ∈ { 0 })))
3029simplbda 502 . . . . . . . 8 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝐹 “ { 0 })) → (𝐹𝑥) ∈ { 0 })
3124, 30syldan 593 . . . . . . 7 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (𝐹 “ { 0 }))) → (𝐹𝑥) ∈ { 0 })
32 fvex 6676 . . . . . . . 8 (𝐹𝑥) ∈ V
3332elsn 4575 . . . . . . 7 ((𝐹𝑥) ∈ { 0 } ↔ (𝐹𝑥) = 0 )
3431, 33sylib 220 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (𝐹 “ { 0 }))) → (𝐹𝑥) = 0 )
3534oveq2d 7165 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (𝐹 “ { 0 }))) → ((𝐹‘((invr𝑅)‘𝑥))(.r𝑆)(𝐹𝑥)) = ((𝐹‘((invr𝑅)‘𝑥))(.r𝑆) 0 ))
36 rhmrcl2 19467 . . . . . . 7 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring)
3736adantr 483 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (𝐹 “ { 0 }))) → 𝑆 ∈ Ring)
3826adantr 483 . . . . . . 7 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (𝐹 “ { 0 }))) → 𝐹:(Base‘𝑅)⟶(Base‘𝑆))
3938, 18ffvelrnd 6845 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (𝐹 “ { 0 }))) → (𝐹‘((invr𝑅)‘𝑥)) ∈ (Base‘𝑆))
40 kerunit.2 . . . . . . 7 0 = (0g𝑆)
4125, 21, 40ringrz 19333 . . . . . 6 ((𝑆 ∈ Ring ∧ (𝐹‘((invr𝑅)‘𝑥)) ∈ (Base‘𝑆)) → ((𝐹‘((invr𝑅)‘𝑥))(.r𝑆) 0 ) = 0 )
4237, 39, 41syl2anc 586 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (𝐹 “ { 0 }))) → ((𝐹‘((invr𝑅)‘𝑥))(.r𝑆) 0 ) = 0 )
4323, 35, 423eqtrd 2859 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (𝐹 “ { 0 }))) → (𝐹‘(((invr𝑅)‘𝑥)(.r𝑅)𝑥)) = 0 )
44 kerunit.3 . . . . . 6 1 = (1r𝑆)
459, 44rhm1 19477 . . . . 5 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹‘(1r𝑅)) = 1 )
4645adantr 483 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (𝐹 “ { 0 }))) → (𝐹‘(1r𝑅)) = 1 )
4713, 43, 463eqtr3rd 2864 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (𝐹 “ { 0 }))) → 1 = 0 )
4847reximdva0 4305 . 2 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑈 ∩ (𝐹 “ { 0 })) ≠ ∅) → ∃𝑥 ∈ (𝑈 ∩ (𝐹 “ { 0 })) 1 = 0 )
49 id 22 . . 3 ( 1 = 01 = 0 )
5049rexlimivw 3281 . 2 (∃𝑥 ∈ (𝑈 ∩ (𝐹 “ { 0 })) 1 = 01 = 0 )
5148, 50syl 17 1 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑈 ∩ (𝐹 “ { 0 })) ≠ ∅) → 1 = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1536  wcel 2113  wne 3015  wrex 3138  cin 3928  c0 4284  {csn 4560  ccnv 5547  cima 5551   Fn wfn 6343  wf 6344  cfv 6348  (class class class)co 7149  Basecbs 16478  .rcmulr 16561  0gc0g 16708  1rcur 19246  Ringcrg 19292  Unitcui 19384  invrcinvr 19416   RingHom crh 19459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-nel 3123  df-ral 3142  df-rex 3143  df-reu 3144  df-rmo 3145  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-pss 3947  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7574  df-tpos 7885  df-wrecs 7940  df-recs 8001  df-rdg 8039  df-er 8282  df-map 8401  df-en 8503  df-dom 8504  df-sdom 8505  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11632  df-2 11694  df-3 11695  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-mulr 16574  df-0g 16710  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-mhm 17951  df-grp 18101  df-minusg 18102  df-ghm 18351  df-mgp 19235  df-ur 19247  df-ring 19294  df-oppr 19368  df-dvdsr 19386  df-unit 19387  df-invr 19417  df-rnghom 19462
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator