![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lduallmodlem | Structured version Visualization version GIF version |
Description: Lemma for lduallmod 34943. (Contributed by NM, 22-Oct-2014.) |
Ref | Expression |
---|---|
lduallmod.d | ⊢ 𝐷 = (LDual‘𝑊) |
lduallmod.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lduallmod.v | ⊢ 𝑉 = (Base‘𝑊) |
lduallmod.p | ⊢ + = ∘𝑓 (+g‘𝑊) |
lduallmod.f | ⊢ 𝐹 = (LFnl‘𝑊) |
lduallmod.r | ⊢ 𝑅 = (Scalar‘𝑊) |
lduallmod.k | ⊢ 𝐾 = (Base‘𝑅) |
lduallmod.t | ⊢ × = (.r‘𝑅) |
lduallmod.o | ⊢ 𝑂 = (oppr‘𝑅) |
lduallmod.s | ⊢ · = ( ·𝑠 ‘𝐷) |
Ref | Expression |
---|---|
lduallmodlem | ⊢ (𝜑 → 𝐷 ∈ LMod) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lduallmod.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
2 | lduallmod.d | . . . 4 ⊢ 𝐷 = (LDual‘𝑊) | |
3 | eqid 2760 | . . . 4 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
4 | lduallmod.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
5 | 1, 2, 3, 4 | ldualvbase 34916 | . . 3 ⊢ (𝜑 → (Base‘𝐷) = 𝐹) |
6 | 5 | eqcomd 2766 | . 2 ⊢ (𝜑 → 𝐹 = (Base‘𝐷)) |
7 | eqidd 2761 | . 2 ⊢ (𝜑 → (+g‘𝐷) = (+g‘𝐷)) | |
8 | lduallmod.r | . . . 4 ⊢ 𝑅 = (Scalar‘𝑊) | |
9 | lduallmod.o | . . . 4 ⊢ 𝑂 = (oppr‘𝑅) | |
10 | eqid 2760 | . . . 4 ⊢ (Scalar‘𝐷) = (Scalar‘𝐷) | |
11 | 8, 9, 2, 10, 4 | ldualsca 34922 | . . 3 ⊢ (𝜑 → (Scalar‘𝐷) = 𝑂) |
12 | 11 | eqcomd 2766 | . 2 ⊢ (𝜑 → 𝑂 = (Scalar‘𝐷)) |
13 | lduallmod.s | . . 3 ⊢ · = ( ·𝑠 ‘𝐷) | |
14 | 13 | a1i 11 | . 2 ⊢ (𝜑 → · = ( ·𝑠 ‘𝐷)) |
15 | lduallmod.k | . . . 4 ⊢ 𝐾 = (Base‘𝑅) | |
16 | 9, 15 | opprbas 18829 | . . 3 ⊢ 𝐾 = (Base‘𝑂) |
17 | 16 | a1i 11 | . 2 ⊢ (𝜑 → 𝐾 = (Base‘𝑂)) |
18 | eqid 2760 | . . . 4 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
19 | 9, 18 | oppradd 18830 | . . 3 ⊢ (+g‘𝑅) = (+g‘𝑂) |
20 | 19 | a1i 11 | . 2 ⊢ (𝜑 → (+g‘𝑅) = (+g‘𝑂)) |
21 | 11 | fveq2d 6356 | . 2 ⊢ (𝜑 → (.r‘(Scalar‘𝐷)) = (.r‘𝑂)) |
22 | eqid 2760 | . . . 4 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
23 | 9, 22 | oppr1 18834 | . . 3 ⊢ (1r‘𝑅) = (1r‘𝑂) |
24 | 23 | a1i 11 | . 2 ⊢ (𝜑 → (1r‘𝑅) = (1r‘𝑂)) |
25 | 8 | lmodring 19073 | . . 3 ⊢ (𝑊 ∈ LMod → 𝑅 ∈ Ring) |
26 | 9 | opprring 18831 | . . 3 ⊢ (𝑅 ∈ Ring → 𝑂 ∈ Ring) |
27 | 4, 25, 26 | 3syl 18 | . 2 ⊢ (𝜑 → 𝑂 ∈ Ring) |
28 | 2, 4 | ldualgrp 34936 | . 2 ⊢ (𝜑 → 𝐷 ∈ Grp) |
29 | 4 | 3ad2ant1 1128 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹) → 𝑊 ∈ LMod) |
30 | simp2 1132 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹) → 𝑥 ∈ 𝐾) | |
31 | simp3 1133 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹) → 𝑦 ∈ 𝐹) | |
32 | 1, 8, 15, 2, 13, 29, 30, 31 | ldualvscl 34929 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹) → (𝑥 · 𝑦) ∈ 𝐹) |
33 | eqid 2760 | . . 3 ⊢ (+g‘𝐷) = (+g‘𝐷) | |
34 | 4 | adantr 472 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ 𝐹)) → 𝑊 ∈ LMod) |
35 | simpr1 1234 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ 𝐹)) → 𝑥 ∈ 𝐾) | |
36 | simpr2 1236 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ 𝐹)) → 𝑦 ∈ 𝐹) | |
37 | simpr3 1238 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ 𝐹)) → 𝑧 ∈ 𝐹) | |
38 | 1, 8, 15, 2, 33, 13, 34, 35, 36, 37 | ldualvsdi1 34933 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ 𝐹)) → (𝑥 · (𝑦(+g‘𝐷)𝑧)) = ((𝑥 · 𝑦)(+g‘𝐷)(𝑥 · 𝑧))) |
39 | 4 | adantr 472 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐹)) → 𝑊 ∈ LMod) |
40 | simpr1 1234 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐹)) → 𝑥 ∈ 𝐾) | |
41 | simpr2 1236 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐹)) → 𝑦 ∈ 𝐾) | |
42 | simpr3 1238 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐹)) → 𝑧 ∈ 𝐹) | |
43 | 1, 8, 18, 15, 2, 33, 13, 39, 40, 41, 42 | ldualvsdi2 34934 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐹)) → ((𝑥(+g‘𝑅)𝑦) · 𝑧) = ((𝑥 · 𝑧)(+g‘𝐷)(𝑦 · 𝑧))) |
44 | eqid 2760 | . . 3 ⊢ (.r‘(Scalar‘𝐷)) = (.r‘(Scalar‘𝐷)) | |
45 | 1, 8, 15, 2, 10, 44, 13, 39, 40, 41, 42 | ldualvsass2 34932 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐹)) → ((𝑥(.r‘(Scalar‘𝐷))𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧))) |
46 | lduallmod.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
47 | lduallmod.t | . . . 4 ⊢ × = (.r‘𝑅) | |
48 | 4 | adantr 472 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐹) → 𝑊 ∈ LMod) |
49 | 15, 22 | ringidcl 18768 | . . . . . 6 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ 𝐾) |
50 | 4, 25, 49 | 3syl 18 | . . . . 5 ⊢ (𝜑 → (1r‘𝑅) ∈ 𝐾) |
51 | 50 | adantr 472 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐹) → (1r‘𝑅) ∈ 𝐾) |
52 | simpr 479 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐹) → 𝑥 ∈ 𝐹) | |
53 | 1, 46, 8, 15, 47, 2, 13, 48, 51, 52 | ldualvs 34927 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐹) → ((1r‘𝑅) · 𝑥) = (𝑥 ∘𝑓 × (𝑉 × {(1r‘𝑅)}))) |
54 | 46, 8, 1, 15, 47, 22, 48, 52 | lfl1sc 34874 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐹) → (𝑥 ∘𝑓 × (𝑉 × {(1r‘𝑅)})) = 𝑥) |
55 | 53, 54 | eqtrd 2794 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐹) → ((1r‘𝑅) · 𝑥) = 𝑥) |
56 | 6, 7, 12, 14, 17, 20, 21, 24, 27, 28, 32, 38, 43, 45, 55 | islmodd 19071 | 1 ⊢ (𝜑 → 𝐷 ∈ LMod) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 {csn 4321 × cxp 5264 ‘cfv 6049 (class class class)co 6813 ∘𝑓 cof 7060 Basecbs 16059 +gcplusg 16143 .rcmulr 16144 Scalarcsca 16146 ·𝑠 cvsca 16147 1rcur 18701 Ringcrg 18747 opprcoppr 18822 LModclmod 19065 LFnlclfn 34847 LDualcld 34913 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-of 7062 df-om 7231 df-1st 7333 df-2nd 7334 df-tpos 7521 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-1o 7729 df-oadd 7733 df-er 7911 df-map 8025 df-en 8122 df-dom 8123 df-sdom 8124 df-fin 8125 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-nn 11213 df-2 11271 df-3 11272 df-4 11273 df-5 11274 df-6 11275 df-n0 11485 df-z 11570 df-uz 11880 df-fz 12520 df-struct 16061 df-ndx 16062 df-slot 16063 df-base 16065 df-sets 16066 df-plusg 16156 df-mulr 16157 df-sca 16159 df-vsca 16160 df-0g 16304 df-mgm 17443 df-sgrp 17485 df-mnd 17496 df-grp 17626 df-minusg 17627 df-sbg 17628 df-cmn 18395 df-abl 18396 df-mgp 18690 df-ur 18702 df-ring 18749 df-oppr 18823 df-lmod 19067 df-lfl 34848 df-ldual 34914 |
This theorem is referenced by: lduallmod 34943 |
Copyright terms: Public domain | W3C validator |