MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  legid Structured version   Visualization version   GIF version

Theorem legid 25228
Description: Reflexivity of the less-than relationship. Proposition 5.7 of [Schwabhauser] p. 42. (Contributed by Thierry Arnoux, 27-Jun-2019.)
Hypotheses
Ref Expression
legval.p 𝑃 = (Base‘𝐺)
legval.d = (dist‘𝐺)
legval.i 𝐼 = (Itv‘𝐺)
legval.l = (≤G‘𝐺)
legval.g (𝜑𝐺 ∈ TarskiG)
legid.a (𝜑𝐴𝑃)
legid.b (𝜑𝐵𝑃)
Assertion
Ref Expression
legid (𝜑 → (𝐴 𝐵) (𝐴 𝐵))

Proof of Theorem legid
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 legid.b . . 3 (𝜑𝐵𝑃)
2 legval.p . . . 4 𝑃 = (Base‘𝐺)
3 legval.d . . . 4 = (dist‘𝐺)
4 legval.i . . . 4 𝐼 = (Itv‘𝐺)
5 legval.g . . . 4 (𝜑𝐺 ∈ TarskiG)
6 legid.a . . . 4 (𝜑𝐴𝑃)
72, 3, 4, 5, 6, 1tgbtwntriv2 25127 . . 3 (𝜑𝐵 ∈ (𝐴𝐼𝐵))
8 eqidd 2611 . . 3 (𝜑 → (𝐴 𝐵) = (𝐴 𝐵))
9 eleq1 2676 . . . . 5 (𝑥 = 𝐵 → (𝑥 ∈ (𝐴𝐼𝐵) ↔ 𝐵 ∈ (𝐴𝐼𝐵)))
10 oveq2 6535 . . . . . 6 (𝑥 = 𝐵 → (𝐴 𝑥) = (𝐴 𝐵))
1110eqeq2d 2620 . . . . 5 (𝑥 = 𝐵 → ((𝐴 𝐵) = (𝐴 𝑥) ↔ (𝐴 𝐵) = (𝐴 𝐵)))
129, 11anbi12d 743 . . . 4 (𝑥 = 𝐵 → ((𝑥 ∈ (𝐴𝐼𝐵) ∧ (𝐴 𝐵) = (𝐴 𝑥)) ↔ (𝐵 ∈ (𝐴𝐼𝐵) ∧ (𝐴 𝐵) = (𝐴 𝐵))))
1312rspcev 3282 . . 3 ((𝐵𝑃 ∧ (𝐵 ∈ (𝐴𝐼𝐵) ∧ (𝐴 𝐵) = (𝐴 𝐵))) → ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐵) ∧ (𝐴 𝐵) = (𝐴 𝑥)))
141, 7, 8, 13syl12anc 1316 . 2 (𝜑 → ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐵) ∧ (𝐴 𝐵) = (𝐴 𝑥)))
15 legval.l . . 3 = (≤G‘𝐺)
162, 3, 4, 15, 5, 6, 1, 6, 1legov 25226 . 2 (𝜑 → ((𝐴 𝐵) (𝐴 𝐵) ↔ ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐵) ∧ (𝐴 𝐵) = (𝐴 𝑥))))
1714, 16mpbird 246 1 (𝜑 → (𝐴 𝐵) (𝐴 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wrex 2897   class class class wbr 4578  cfv 5790  (class class class)co 6527  Basecbs 15644  distcds 15726  TarskiGcstrkg 25074  Itvcitv 25080  ≤Gcleg 25223
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4694  ax-sep 4704  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825  ax-cnex 9849  ax-resscn 9850  ax-1cn 9851  ax-icn 9852  ax-addcl 9853  ax-addrcl 9854  ax-mulcl 9855  ax-mulrcl 9856  ax-mulcom 9857  ax-addass 9858  ax-mulass 9859  ax-distr 9860  ax-i2m1 9861  ax-1ne0 9862  ax-1rid 9863  ax-rnegex 9864  ax-rrecex 9865  ax-cnre 9866  ax-pre-lttri 9867  ax-pre-lttrn 9868  ax-pre-ltadd 9869  ax-pre-mulgt0 9870
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4368  df-int 4406  df-iun 4452  df-br 4579  df-opab 4639  df-mpt 4640  df-tr 4676  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6936  df-1st 7037  df-2nd 7038  df-wrecs 7272  df-recs 7333  df-rdg 7371  df-1o 7425  df-oadd 7429  df-er 7607  df-pm 7725  df-en 7820  df-dom 7821  df-sdom 7822  df-fin 7823  df-card 8626  df-cda 8851  df-pnf 9933  df-mnf 9934  df-xr 9935  df-ltxr 9936  df-le 9937  df-sub 10120  df-neg 10121  df-nn 10871  df-2 10929  df-3 10930  df-n0 11143  df-z 11214  df-uz 11523  df-fz 12156  df-fzo 12293  df-hash 12938  df-word 13103  df-concat 13105  df-s1 13106  df-s2 13393  df-s3 13394  df-trkgc 25092  df-trkgb 25093  df-trkgcb 25094  df-trkg 25097  df-cgrg 25152  df-leg 25224
This theorem is referenced by:  legtrid  25232  legov3  25239
  Copyright terms: Public domain W3C validator