Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpmod6i1 Structured version   Visualization version   GIF version

Theorem lhpmod6i1 34802
Description: Modular law for hyperplanes analogous to complement of atmod2i1 34624 for atoms. (Contributed by NM, 1-Jun-2013.)
Hypotheses
Ref Expression
lhpmod.b 𝐵 = (Base‘𝐾)
lhpmod.l = (le‘𝐾)
lhpmod.j = (join‘𝐾)
lhpmod.m = (meet‘𝐾)
lhpmod.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhpmod6i1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → (𝑋 (𝑌 𝑊)) = ((𝑋 𝑌) 𝑊))

Proof of Theorem lhpmod6i1
StepHypRef Expression
1 simp1l 1083 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → 𝐾 ∈ HL)
2 simp1r 1084 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → 𝑊𝐻)
3 eqid 2621 . . . . 5 (oc‘𝐾) = (oc‘𝐾)
4 eqid 2621 . . . . 5 (Atoms‘𝐾) = (Atoms‘𝐾)
5 lhpmod.h . . . . 5 𝐻 = (LHyp‘𝐾)
63, 4, 5lhpocat 34780 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((oc‘𝐾)‘𝑊) ∈ (Atoms‘𝐾))
71, 2, 6syl2anc 692 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → ((oc‘𝐾)‘𝑊) ∈ (Atoms‘𝐾))
8 hlop 34126 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ OP)
91, 8syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → 𝐾 ∈ OP)
10 simp2l 1085 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → 𝑋𝐵)
11 lhpmod.b . . . . 5 𝐵 = (Base‘𝐾)
1211, 3opoccl 33958 . . . 4 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
139, 10, 12syl2anc 692 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
14 simp2r 1086 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → 𝑌𝐵)
1511, 3opoccl 33958 . . . 4 ((𝐾 ∈ OP ∧ 𝑌𝐵) → ((oc‘𝐾)‘𝑌) ∈ 𝐵)
169, 14, 15syl2anc 692 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → ((oc‘𝐾)‘𝑌) ∈ 𝐵)
17 simp3 1061 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → 𝑋 𝑊)
1811, 5lhpbase 34761 . . . . . 6 (𝑊𝐻𝑊𝐵)
192, 18syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → 𝑊𝐵)
20 lhpmod.l . . . . . 6 = (le‘𝐾)
2111, 20, 3oplecon3b 33964 . . . . 5 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑊𝐵) → (𝑋 𝑊 ↔ ((oc‘𝐾)‘𝑊) ((oc‘𝐾)‘𝑋)))
229, 10, 19, 21syl3anc 1323 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → (𝑋 𝑊 ↔ ((oc‘𝐾)‘𝑊) ((oc‘𝐾)‘𝑋)))
2317, 22mpbid 222 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → ((oc‘𝐾)‘𝑊) ((oc‘𝐾)‘𝑋))
24 lhpmod.j . . . 4 = (join‘𝐾)
25 lhpmod.m . . . 4 = (meet‘𝐾)
2611, 20, 24, 25, 4atmod2i1 34624 . . 3 ((𝐾 ∈ HL ∧ (((oc‘𝐾)‘𝑊) ∈ (Atoms‘𝐾) ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑌) ∈ 𝐵) ∧ ((oc‘𝐾)‘𝑊) ((oc‘𝐾)‘𝑋)) → ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) ((oc‘𝐾)‘𝑊)) = (((oc‘𝐾)‘𝑋) (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))))
271, 7, 13, 16, 23, 26syl131anc 1336 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) ((oc‘𝐾)‘𝑊)) = (((oc‘𝐾)‘𝑋) (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))))
28 hllat 34127 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ Lat)
291, 28syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → 𝐾 ∈ Lat)
3011, 25latmcl 16973 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑊𝐵) → (𝑌 𝑊) ∈ 𝐵)
3129, 14, 19, 30syl3anc 1323 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → (𝑌 𝑊) ∈ 𝐵)
3211, 24latjcl 16972 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (𝑌 𝑊) ∈ 𝐵) → (𝑋 (𝑌 𝑊)) ∈ 𝐵)
3329, 10, 31, 32syl3anc 1323 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → (𝑋 (𝑌 𝑊)) ∈ 𝐵)
3411, 24latjcl 16972 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
3529, 10, 14, 34syl3anc 1323 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → (𝑋 𝑌) ∈ 𝐵)
3611, 25latmcl 16973 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋 𝑌) ∈ 𝐵𝑊𝐵) → ((𝑋 𝑌) 𝑊) ∈ 𝐵)
3729, 35, 19, 36syl3anc 1323 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → ((𝑋 𝑌) 𝑊) ∈ 𝐵)
3811, 3opcon3b 33960 . . . 4 ((𝐾 ∈ OP ∧ (𝑋 (𝑌 𝑊)) ∈ 𝐵 ∧ ((𝑋 𝑌) 𝑊) ∈ 𝐵) → ((𝑋 (𝑌 𝑊)) = ((𝑋 𝑌) 𝑊) ↔ ((oc‘𝐾)‘((𝑋 𝑌) 𝑊)) = ((oc‘𝐾)‘(𝑋 (𝑌 𝑊)))))
399, 33, 37, 38syl3anc 1323 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → ((𝑋 (𝑌 𝑊)) = ((𝑋 𝑌) 𝑊) ↔ ((oc‘𝐾)‘((𝑋 𝑌) 𝑊)) = ((oc‘𝐾)‘(𝑋 (𝑌 𝑊)))))
40 hlol 34125 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ OL)
411, 40syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → 𝐾 ∈ OL)
4211, 24, 25, 3oldmm1 33981 . . . . . 6 ((𝐾 ∈ OL ∧ (𝑋 𝑌) ∈ 𝐵𝑊𝐵) → ((oc‘𝐾)‘((𝑋 𝑌) 𝑊)) = (((oc‘𝐾)‘(𝑋 𝑌)) ((oc‘𝐾)‘𝑊)))
4341, 35, 19, 42syl3anc 1323 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → ((oc‘𝐾)‘((𝑋 𝑌) 𝑊)) = (((oc‘𝐾)‘(𝑋 𝑌)) ((oc‘𝐾)‘𝑊)))
4411, 24, 25, 3oldmj1 33985 . . . . . . 7 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘(𝑋 𝑌)) = (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)))
4541, 10, 14, 44syl3anc 1323 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → ((oc‘𝐾)‘(𝑋 𝑌)) = (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)))
4645oveq1d 6619 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → (((oc‘𝐾)‘(𝑋 𝑌)) ((oc‘𝐾)‘𝑊)) = ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) ((oc‘𝐾)‘𝑊)))
4743, 46eqtrd 2655 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → ((oc‘𝐾)‘((𝑋 𝑌) 𝑊)) = ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) ((oc‘𝐾)‘𝑊)))
4811, 24, 25, 3oldmj1 33985 . . . . . 6 ((𝐾 ∈ OL ∧ 𝑋𝐵 ∧ (𝑌 𝑊) ∈ 𝐵) → ((oc‘𝐾)‘(𝑋 (𝑌 𝑊))) = (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘(𝑌 𝑊))))
4941, 10, 31, 48syl3anc 1323 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → ((oc‘𝐾)‘(𝑋 (𝑌 𝑊))) = (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘(𝑌 𝑊))))
5011, 24, 25, 3oldmm1 33981 . . . . . . 7 ((𝐾 ∈ OL ∧ 𝑌𝐵𝑊𝐵) → ((oc‘𝐾)‘(𝑌 𝑊)) = (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊)))
5141, 14, 19, 50syl3anc 1323 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → ((oc‘𝐾)‘(𝑌 𝑊)) = (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊)))
5251oveq2d 6620 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘(𝑌 𝑊))) = (((oc‘𝐾)‘𝑋) (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))))
5349, 52eqtrd 2655 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → ((oc‘𝐾)‘(𝑋 (𝑌 𝑊))) = (((oc‘𝐾)‘𝑋) (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))))
5447, 53eqeq12d 2636 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → (((oc‘𝐾)‘((𝑋 𝑌) 𝑊)) = ((oc‘𝐾)‘(𝑋 (𝑌 𝑊))) ↔ ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) ((oc‘𝐾)‘𝑊)) = (((oc‘𝐾)‘𝑋) (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊)))))
5539, 54bitrd 268 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → ((𝑋 (𝑌 𝑊)) = ((𝑋 𝑌) 𝑊) ↔ ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) ((oc‘𝐾)‘𝑊)) = (((oc‘𝐾)‘𝑋) (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊)))))
5627, 55mpbird 247 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → (𝑋 (𝑌 𝑊)) = ((𝑋 𝑌) 𝑊))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987   class class class wbr 4613  cfv 5847  (class class class)co 6604  Basecbs 15781  lecple 15869  occoc 15870  joincjn 16865  meetcmee 16866  Latclat 16966  OPcops 33936  OLcol 33938  Atomscatm 34027  HLchlt 34114  LHypclh 34747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-1st 7113  df-2nd 7114  df-preset 16849  df-poset 16867  df-plt 16879  df-lub 16895  df-glb 16896  df-join 16897  df-meet 16898  df-p0 16960  df-p1 16961  df-lat 16967  df-clat 17029  df-oposet 33940  df-ol 33942  df-oml 33943  df-covers 34030  df-ats 34031  df-atl 34062  df-cvlat 34086  df-hlat 34115  df-psubsp 34266  df-pmap 34267  df-padd 34559  df-lhyp 34751
This theorem is referenced by:  lhple  34805  trlcolem  35491
  Copyright terms: Public domain W3C validator