Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpmod2i2 Structured version   Visualization version   GIF version

Theorem lhpmod2i2 37189
Description: Modular law for hyperplanes analogous to atmod2i2 37013 for atoms. (Contributed by NM, 9-Feb-2013.)
Hypotheses
Ref Expression
lhpmod.b 𝐵 = (Base‘𝐾)
lhpmod.l = (le‘𝐾)
lhpmod.j = (join‘𝐾)
lhpmod.m = (meet‘𝐾)
lhpmod.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhpmod2i2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → ((𝑋 𝑊) 𝑌) = (𝑋 (𝑊 𝑌)))

Proof of Theorem lhpmod2i2
StepHypRef Expression
1 simp1l 1193 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → 𝐾 ∈ HL)
2 simp1r 1194 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → 𝑊𝐻)
3 eqid 2821 . . . . 5 (oc‘𝐾) = (oc‘𝐾)
4 eqid 2821 . . . . 5 (Atoms‘𝐾) = (Atoms‘𝐾)
5 lhpmod.h . . . . 5 𝐻 = (LHyp‘𝐾)
63, 4, 5lhpocat 37168 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((oc‘𝐾)‘𝑊) ∈ (Atoms‘𝐾))
71, 2, 6syl2anc 586 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → ((oc‘𝐾)‘𝑊) ∈ (Atoms‘𝐾))
8 hlop 36513 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ OP)
91, 8syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → 𝐾 ∈ OP)
10 simp2l 1195 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → 𝑋𝐵)
11 lhpmod.b . . . . 5 𝐵 = (Base‘𝐾)
1211, 3opoccl 36345 . . . 4 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
139, 10, 12syl2anc 586 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
14 simp2r 1196 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → 𝑌𝐵)
1511, 3opoccl 36345 . . . 4 ((𝐾 ∈ OP ∧ 𝑌𝐵) → ((oc‘𝐾)‘𝑌) ∈ 𝐵)
169, 14, 15syl2anc 586 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → ((oc‘𝐾)‘𝑌) ∈ 𝐵)
17 simp3 1134 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → 𝑌 𝑋)
18 lhpmod.l . . . . . 6 = (le‘𝐾)
1911, 18, 3oplecon3b 36351 . . . . 5 ((𝐾 ∈ OP ∧ 𝑌𝐵𝑋𝐵) → (𝑌 𝑋 ↔ ((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)))
209, 14, 10, 19syl3anc 1367 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → (𝑌 𝑋 ↔ ((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)))
2117, 20mpbid 234 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → ((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌))
22 lhpmod.j . . . 4 = (join‘𝐾)
23 lhpmod.m . . . 4 = (meet‘𝐾)
2411, 18, 22, 23, 4atmod1i2 37010 . . 3 ((𝐾 ∈ HL ∧ (((oc‘𝐾)‘𝑊) ∈ (Atoms‘𝐾) ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑌) ∈ 𝐵) ∧ ((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) → (((oc‘𝐾)‘𝑋) (((oc‘𝐾)‘𝑊) ((oc‘𝐾)‘𝑌))) = ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊)) ((oc‘𝐾)‘𝑌)))
251, 7, 13, 16, 21, 24syl131anc 1379 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → (((oc‘𝐾)‘𝑋) (((oc‘𝐾)‘𝑊) ((oc‘𝐾)‘𝑌))) = ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊)) ((oc‘𝐾)‘𝑌)))
261hllatd 36515 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → 𝐾 ∈ Lat)
2711, 5lhpbase 37149 . . . . . . 7 (𝑊𝐻𝑊𝐵)
282, 27syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → 𝑊𝐵)
2911, 23latmcl 17662 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵) → (𝑋 𝑊) ∈ 𝐵)
3026, 10, 28, 29syl3anc 1367 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → (𝑋 𝑊) ∈ 𝐵)
3111, 22latjcl 17661 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋 𝑊) ∈ 𝐵𝑌𝐵) → ((𝑋 𝑊) 𝑌) ∈ 𝐵)
3226, 30, 14, 31syl3anc 1367 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → ((𝑋 𝑊) 𝑌) ∈ 𝐵)
3311, 22latjcl 17661 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑊𝐵𝑌𝐵) → (𝑊 𝑌) ∈ 𝐵)
3426, 28, 14, 33syl3anc 1367 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → (𝑊 𝑌) ∈ 𝐵)
3511, 23latmcl 17662 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (𝑊 𝑌) ∈ 𝐵) → (𝑋 (𝑊 𝑌)) ∈ 𝐵)
3626, 10, 34, 35syl3anc 1367 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → (𝑋 (𝑊 𝑌)) ∈ 𝐵)
3711, 3opcon3b 36347 . . . 4 ((𝐾 ∈ OP ∧ ((𝑋 𝑊) 𝑌) ∈ 𝐵 ∧ (𝑋 (𝑊 𝑌)) ∈ 𝐵) → (((𝑋 𝑊) 𝑌) = (𝑋 (𝑊 𝑌)) ↔ ((oc‘𝐾)‘(𝑋 (𝑊 𝑌))) = ((oc‘𝐾)‘((𝑋 𝑊) 𝑌))))
389, 32, 36, 37syl3anc 1367 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → (((𝑋 𝑊) 𝑌) = (𝑋 (𝑊 𝑌)) ↔ ((oc‘𝐾)‘(𝑋 (𝑊 𝑌))) = ((oc‘𝐾)‘((𝑋 𝑊) 𝑌))))
39 hlol 36512 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ OL)
401, 39syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → 𝐾 ∈ OL)
4111, 22, 23, 3oldmm1 36368 . . . . . 6 ((𝐾 ∈ OL ∧ 𝑋𝐵 ∧ (𝑊 𝑌) ∈ 𝐵) → ((oc‘𝐾)‘(𝑋 (𝑊 𝑌))) = (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘(𝑊 𝑌))))
4240, 10, 34, 41syl3anc 1367 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → ((oc‘𝐾)‘(𝑋 (𝑊 𝑌))) = (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘(𝑊 𝑌))))
4311, 22, 23, 3oldmj1 36372 . . . . . . 7 ((𝐾 ∈ OL ∧ 𝑊𝐵𝑌𝐵) → ((oc‘𝐾)‘(𝑊 𝑌)) = (((oc‘𝐾)‘𝑊) ((oc‘𝐾)‘𝑌)))
4440, 28, 14, 43syl3anc 1367 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → ((oc‘𝐾)‘(𝑊 𝑌)) = (((oc‘𝐾)‘𝑊) ((oc‘𝐾)‘𝑌)))
4544oveq2d 7172 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘(𝑊 𝑌))) = (((oc‘𝐾)‘𝑋) (((oc‘𝐾)‘𝑊) ((oc‘𝐾)‘𝑌))))
4642, 45eqtrd 2856 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → ((oc‘𝐾)‘(𝑋 (𝑊 𝑌))) = (((oc‘𝐾)‘𝑋) (((oc‘𝐾)‘𝑊) ((oc‘𝐾)‘𝑌))))
4711, 22, 23, 3oldmj1 36372 . . . . . 6 ((𝐾 ∈ OL ∧ (𝑋 𝑊) ∈ 𝐵𝑌𝐵) → ((oc‘𝐾)‘((𝑋 𝑊) 𝑌)) = (((oc‘𝐾)‘(𝑋 𝑊)) ((oc‘𝐾)‘𝑌)))
4840, 30, 14, 47syl3anc 1367 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → ((oc‘𝐾)‘((𝑋 𝑊) 𝑌)) = (((oc‘𝐾)‘(𝑋 𝑊)) ((oc‘𝐾)‘𝑌)))
4911, 22, 23, 3oldmm1 36368 . . . . . . 7 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑊𝐵) → ((oc‘𝐾)‘(𝑋 𝑊)) = (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊)))
5040, 10, 28, 49syl3anc 1367 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → ((oc‘𝐾)‘(𝑋 𝑊)) = (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊)))
5150oveq1d 7171 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → (((oc‘𝐾)‘(𝑋 𝑊)) ((oc‘𝐾)‘𝑌)) = ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊)) ((oc‘𝐾)‘𝑌)))
5248, 51eqtrd 2856 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → ((oc‘𝐾)‘((𝑋 𝑊) 𝑌)) = ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊)) ((oc‘𝐾)‘𝑌)))
5346, 52eqeq12d 2837 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → (((oc‘𝐾)‘(𝑋 (𝑊 𝑌))) = ((oc‘𝐾)‘((𝑋 𝑊) 𝑌)) ↔ (((oc‘𝐾)‘𝑋) (((oc‘𝐾)‘𝑊) ((oc‘𝐾)‘𝑌))) = ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊)) ((oc‘𝐾)‘𝑌))))
5438, 53bitrd 281 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → (((𝑋 𝑊) 𝑌) = (𝑋 (𝑊 𝑌)) ↔ (((oc‘𝐾)‘𝑋) (((oc‘𝐾)‘𝑊) ((oc‘𝐾)‘𝑌))) = ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊)) ((oc‘𝐾)‘𝑌))))
5525, 54mpbird 259 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → ((𝑋 𝑊) 𝑌) = (𝑋 (𝑊 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114   class class class wbr 5066  cfv 6355  (class class class)co 7156  Basecbs 16483  lecple 16572  occoc 16573  joincjn 17554  meetcmee 17555  Latclat 17655  OPcops 36323  OLcol 36325  Atomscatm 36414  HLchlt 36501  LHypclh 37135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-1st 7689  df-2nd 7690  df-proset 17538  df-poset 17556  df-plt 17568  df-lub 17584  df-glb 17585  df-join 17586  df-meet 17587  df-p0 17649  df-p1 17650  df-lat 17656  df-clat 17718  df-oposet 36327  df-ol 36329  df-oml 36330  df-covers 36417  df-ats 36418  df-atl 36449  df-cvlat 36473  df-hlat 36502  df-psubsp 36654  df-pmap 36655  df-padd 36947  df-lhyp 37139
This theorem is referenced by:  cdleme30a  37529  trlcolem  37877
  Copyright terms: Public domain W3C validator