Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincdifsn Structured version   Visualization version   GIF version

Theorem lincdifsn 44499
Description: A vector is a linear combination of a set containing this vector. (Contributed by AV, 21-Apr-2019.) (Revised by AV, 28-Jul-2019.)
Hypotheses
Ref Expression
lincdifsn.b 𝐵 = (Base‘𝑀)
lincdifsn.r 𝑅 = (Scalar‘𝑀)
lincdifsn.s 𝑆 = (Base‘𝑅)
lincdifsn.t · = ( ·𝑠𝑀)
lincdifsn.p + = (+g𝑀)
lincdifsn.0 0 = (0g𝑅)
Assertion
Ref Expression
lincdifsn (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝐹( linC ‘𝑀)𝑉) = ((𝐺( linC ‘𝑀)(𝑉 ∖ {𝑋})) + ((𝐹𝑋) · 𝑋)))

Proof of Theorem lincdifsn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp11 1199 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → 𝑀 ∈ LMod)
2 lincdifsn.s . . . . . . . . 9 𝑆 = (Base‘𝑅)
3 lincdifsn.r . . . . . . . . . 10 𝑅 = (Scalar‘𝑀)
43fveq2i 6673 . . . . . . . . 9 (Base‘𝑅) = (Base‘(Scalar‘𝑀))
52, 4eqtri 2844 . . . . . . . 8 𝑆 = (Base‘(Scalar‘𝑀))
65oveq1i 7166 . . . . . . 7 (𝑆m 𝑉) = ((Base‘(Scalar‘𝑀)) ↑m 𝑉)
76eleq2i 2904 . . . . . 6 (𝐹 ∈ (𝑆m 𝑉) ↔ 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
87biimpi 218 . . . . 5 (𝐹 ∈ (𝑆m 𝑉) → 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
98adantr 483 . . . 4 ((𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) → 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
1093ad2ant2 1130 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
11 lincdifsn.b . . . . . . . 8 𝐵 = (Base‘𝑀)
1211pweqi 4557 . . . . . . 7 𝒫 𝐵 = 𝒫 (Base‘𝑀)
1312eleq2i 2904 . . . . . 6 (𝑉 ∈ 𝒫 𝐵𝑉 ∈ 𝒫 (Base‘𝑀))
1413biimpi 218 . . . . 5 (𝑉 ∈ 𝒫 𝐵𝑉 ∈ 𝒫 (Base‘𝑀))
15143ad2ant2 1130 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → 𝑉 ∈ 𝒫 (Base‘𝑀))
16153ad2ant1 1129 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → 𝑉 ∈ 𝒫 (Base‘𝑀))
17 lincval 44484 . . 3 ((𝑀 ∈ LMod ∧ 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝐹( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑥𝑉 ↦ ((𝐹𝑥)( ·𝑠𝑀)𝑥))))
181, 10, 16, 17syl3anc 1367 . 2 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝐹( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑥𝑉 ↦ ((𝐹𝑥)( ·𝑠𝑀)𝑥))))
19 lincdifsn.p . . . 4 + = (+g𝑀)
20 lmodcmn 19682 . . . . . 6 (𝑀 ∈ LMod → 𝑀 ∈ CMnd)
21203ad2ant1 1129 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → 𝑀 ∈ CMnd)
22213ad2ant1 1129 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → 𝑀 ∈ CMnd)
23 simp12 1200 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → 𝑉 ∈ 𝒫 𝐵)
2414anim2i 618 . . . . . . 7 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)))
25243adant3 1128 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)))
26253ad2ant1 1129 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)))
27 simp2l 1195 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → 𝐹 ∈ (𝑆m 𝑉))
28 lincdifsn.0 . . . . . . . . 9 0 = (0g𝑅)
2928breq2i 5074 . . . . . . . 8 (𝐹 finSupp 0𝐹 finSupp (0g𝑅))
3029biimpi 218 . . . . . . 7 (𝐹 finSupp 0𝐹 finSupp (0g𝑅))
3130adantl 484 . . . . . 6 ((𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) → 𝐹 finSupp (0g𝑅))
32313ad2ant2 1130 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → 𝐹 finSupp (0g𝑅))
333, 2scmfsupp 44446 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp (0g𝑅)) → (𝑥𝑉 ↦ ((𝐹𝑥)( ·𝑠𝑀)𝑥)) finSupp (0g𝑀))
3426, 27, 32, 33syl3anc 1367 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝑥𝑉 ↦ ((𝐹𝑥)( ·𝑠𝑀)𝑥)) finSupp (0g𝑀))
35 simpl1 1187 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) → 𝑀 ∈ LMod)
3635adantr 483 . . . . . 6 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) ∧ 𝑥𝑉) → 𝑀 ∈ LMod)
37 elmapi 8428 . . . . . . . . . 10 (𝐹 ∈ (𝑆m 𝑉) → 𝐹:𝑉𝑆)
38 ffvelrn 6849 . . . . . . . . . . . 12 ((𝐹:𝑉𝑆𝑥𝑉) → (𝐹𝑥) ∈ 𝑆)
3938ex 415 . . . . . . . . . . 11 (𝐹:𝑉𝑆 → (𝑥𝑉 → (𝐹𝑥) ∈ 𝑆))
4039a1d 25 . . . . . . . . . 10 (𝐹:𝑉𝑆 → ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝑥𝑉 → (𝐹𝑥) ∈ 𝑆)))
4137, 40syl 17 . . . . . . . . 9 (𝐹 ∈ (𝑆m 𝑉) → ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝑥𝑉 → (𝐹𝑥) ∈ 𝑆)))
4241adantr 483 . . . . . . . 8 ((𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) → ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝑥𝑉 → (𝐹𝑥) ∈ 𝑆)))
4342impcom 410 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) → (𝑥𝑉 → (𝐹𝑥) ∈ 𝑆))
4443imp 409 . . . . . 6 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) ∧ 𝑥𝑉) → (𝐹𝑥) ∈ 𝑆)
45 elelpwi 4551 . . . . . . . . . 10 ((𝑥𝑉𝑉 ∈ 𝒫 𝐵) → 𝑥𝐵)
4645expcom 416 . . . . . . . . 9 (𝑉 ∈ 𝒫 𝐵 → (𝑥𝑉𝑥𝐵))
47463ad2ant2 1130 . . . . . . . 8 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝑥𝑉𝑥𝐵))
4847adantr 483 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) → (𝑥𝑉𝑥𝐵))
4948imp 409 . . . . . 6 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) ∧ 𝑥𝑉) → 𝑥𝐵)
50 eqid 2821 . . . . . . 7 ( ·𝑠𝑀) = ( ·𝑠𝑀)
5111, 3, 50, 2lmodvscl 19651 . . . . . 6 ((𝑀 ∈ LMod ∧ (𝐹𝑥) ∈ 𝑆𝑥𝐵) → ((𝐹𝑥)( ·𝑠𝑀)𝑥) ∈ 𝐵)
5236, 44, 49, 51syl3anc 1367 . . . . 5 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) ∧ 𝑥𝑉) → ((𝐹𝑥)( ·𝑠𝑀)𝑥) ∈ 𝐵)
53523adantl3 1164 . . . 4 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) ∧ 𝑥𝑉) → ((𝐹𝑥)( ·𝑠𝑀)𝑥) ∈ 𝐵)
54 simp13 1201 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → 𝑋𝑉)
55 ffvelrn 6849 . . . . . . . . . . 11 ((𝐹:𝑉𝑆𝑋𝑉) → (𝐹𝑋) ∈ 𝑆)
5655expcom 416 . . . . . . . . . 10 (𝑋𝑉 → (𝐹:𝑉𝑆 → (𝐹𝑋) ∈ 𝑆))
57563ad2ant3 1131 . . . . . . . . 9 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝐹:𝑉𝑆 → (𝐹𝑋) ∈ 𝑆))
5837, 57syl5com 31 . . . . . . . 8 (𝐹 ∈ (𝑆m 𝑉) → ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝐹𝑋) ∈ 𝑆))
5958adantr 483 . . . . . . 7 ((𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) → ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝐹𝑋) ∈ 𝑆))
6059impcom 410 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) → (𝐹𝑋) ∈ 𝑆)
61 elelpwi 4551 . . . . . . . . 9 ((𝑋𝑉𝑉 ∈ 𝒫 𝐵) → 𝑋𝐵)
6261ancoms 461 . . . . . . . 8 ((𝑉 ∈ 𝒫 𝐵𝑋𝑉) → 𝑋𝐵)
63623adant1 1126 . . . . . . 7 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → 𝑋𝐵)
6463adantr 483 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) → 𝑋𝐵)
65 lincdifsn.t . . . . . . 7 · = ( ·𝑠𝑀)
6611, 3, 65, 2lmodvscl 19651 . . . . . 6 ((𝑀 ∈ LMod ∧ (𝐹𝑋) ∈ 𝑆𝑋𝐵) → ((𝐹𝑋) · 𝑋) ∈ 𝐵)
6735, 60, 64, 66syl3anc 1367 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) → ((𝐹𝑋) · 𝑋) ∈ 𝐵)
68673adant3 1128 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → ((𝐹𝑋) · 𝑋) ∈ 𝐵)
6965eqcomi 2830 . . . . . . 7 ( ·𝑠𝑀) = ·
7069a1i 11 . . . . . 6 (𝑥 = 𝑋 → ( ·𝑠𝑀) = · )
71 fveq2 6670 . . . . . 6 (𝑥 = 𝑋 → (𝐹𝑥) = (𝐹𝑋))
72 id 22 . . . . . 6 (𝑥 = 𝑋𝑥 = 𝑋)
7370, 71, 72oveq123d 7177 . . . . 5 (𝑥 = 𝑋 → ((𝐹𝑥)( ·𝑠𝑀)𝑥) = ((𝐹𝑋) · 𝑋))
7473adantl 484 . . . 4 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) ∧ 𝑥 = 𝑋) → ((𝐹𝑥)( ·𝑠𝑀)𝑥) = ((𝐹𝑋) · 𝑋))
7511, 19, 22, 23, 34, 53, 54, 68, 74gsumdifsnd 19081 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝑀 Σg (𝑥𝑉 ↦ ((𝐹𝑥)( ·𝑠𝑀)𝑥))) = ((𝑀 Σg (𝑥 ∈ (𝑉 ∖ {𝑋}) ↦ ((𝐹𝑥)( ·𝑠𝑀)𝑥))) + ((𝐹𝑋) · 𝑋)))
76 fveq1 6669 . . . . . . . . . 10 (𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋})) → (𝐺𝑥) = ((𝐹 ↾ (𝑉 ∖ {𝑋}))‘𝑥))
77763ad2ant3 1131 . . . . . . . . 9 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝐺𝑥) = ((𝐹 ↾ (𝑉 ∖ {𝑋}))‘𝑥))
78 fvres 6689 . . . . . . . . 9 (𝑥 ∈ (𝑉 ∖ {𝑋}) → ((𝐹 ↾ (𝑉 ∖ {𝑋}))‘𝑥) = (𝐹𝑥))
7977, 78sylan9eq 2876 . . . . . . . 8 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) ∧ 𝑥 ∈ (𝑉 ∖ {𝑋})) → (𝐺𝑥) = (𝐹𝑥))
8079oveq1d 7171 . . . . . . 7 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) ∧ 𝑥 ∈ (𝑉 ∖ {𝑋})) → ((𝐺𝑥)( ·𝑠𝑀)𝑥) = ((𝐹𝑥)( ·𝑠𝑀)𝑥))
8180mpteq2dva 5161 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝑥 ∈ (𝑉 ∖ {𝑋}) ↦ ((𝐺𝑥)( ·𝑠𝑀)𝑥)) = (𝑥 ∈ (𝑉 ∖ {𝑋}) ↦ ((𝐹𝑥)( ·𝑠𝑀)𝑥)))
8281eqcomd 2827 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝑥 ∈ (𝑉 ∖ {𝑋}) ↦ ((𝐹𝑥)( ·𝑠𝑀)𝑥)) = (𝑥 ∈ (𝑉 ∖ {𝑋}) ↦ ((𝐺𝑥)( ·𝑠𝑀)𝑥)))
8382oveq2d 7172 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝑀 Σg (𝑥 ∈ (𝑉 ∖ {𝑋}) ↦ ((𝐹𝑥)( ·𝑠𝑀)𝑥))) = (𝑀 Σg (𝑥 ∈ (𝑉 ∖ {𝑋}) ↦ ((𝐺𝑥)( ·𝑠𝑀)𝑥))))
8483oveq1d 7171 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → ((𝑀 Σg (𝑥 ∈ (𝑉 ∖ {𝑋}) ↦ ((𝐹𝑥)( ·𝑠𝑀)𝑥))) + ((𝐹𝑋) · 𝑋)) = ((𝑀 Σg (𝑥 ∈ (𝑉 ∖ {𝑋}) ↦ ((𝐺𝑥)( ·𝑠𝑀)𝑥))) + ((𝐹𝑋) · 𝑋)))
8575, 84eqtrd 2856 . 2 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝑀 Σg (𝑥𝑉 ↦ ((𝐹𝑥)( ·𝑠𝑀)𝑥))) = ((𝑀 Σg (𝑥 ∈ (𝑉 ∖ {𝑋}) ↦ ((𝐺𝑥)( ·𝑠𝑀)𝑥))) + ((𝐹𝑋) · 𝑋)))
86 eqid 2821 . . . . . . . . . . . 12 𝑉 = 𝑉
8786, 5feq23i 6508 . . . . . . . . . . 11 (𝐹:𝑉𝑆𝐹:𝑉⟶(Base‘(Scalar‘𝑀)))
8837, 87sylib 220 . . . . . . . . . 10 (𝐹 ∈ (𝑆m 𝑉) → 𝐹:𝑉⟶(Base‘(Scalar‘𝑀)))
8988adantr 483 . . . . . . . . 9 ((𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) → 𝐹:𝑉⟶(Base‘(Scalar‘𝑀)))
90893ad2ant2 1130 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → 𝐹:𝑉⟶(Base‘(Scalar‘𝑀)))
91 difssd 4109 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝑉 ∖ {𝑋}) ⊆ 𝑉)
9290, 91fssresd 6545 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝐹 ↾ (𝑉 ∖ {𝑋})):(𝑉 ∖ {𝑋})⟶(Base‘(Scalar‘𝑀)))
93 feq1 6495 . . . . . . . 8 (𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋})) → (𝐺:(𝑉 ∖ {𝑋})⟶(Base‘(Scalar‘𝑀)) ↔ (𝐹 ↾ (𝑉 ∖ {𝑋})):(𝑉 ∖ {𝑋})⟶(Base‘(Scalar‘𝑀))))
94933ad2ant3 1131 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝐺:(𝑉 ∖ {𝑋})⟶(Base‘(Scalar‘𝑀)) ↔ (𝐹 ↾ (𝑉 ∖ {𝑋})):(𝑉 ∖ {𝑋})⟶(Base‘(Scalar‘𝑀))))
9592, 94mpbird 259 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → 𝐺:(𝑉 ∖ {𝑋})⟶(Base‘(Scalar‘𝑀)))
96 fvex 6683 . . . . . . 7 (Base‘(Scalar‘𝑀)) ∈ V
97 difexg 5231 . . . . . . . . 9 (𝑉 ∈ 𝒫 𝐵 → (𝑉 ∖ {𝑋}) ∈ V)
98973ad2ant2 1130 . . . . . . . 8 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝑉 ∖ {𝑋}) ∈ V)
99983ad2ant1 1129 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝑉 ∖ {𝑋}) ∈ V)
100 elmapg 8419 . . . . . . 7 (((Base‘(Scalar‘𝑀)) ∈ V ∧ (𝑉 ∖ {𝑋}) ∈ V) → (𝐺 ∈ ((Base‘(Scalar‘𝑀)) ↑m (𝑉 ∖ {𝑋})) ↔ 𝐺:(𝑉 ∖ {𝑋})⟶(Base‘(Scalar‘𝑀))))
10196, 99, 100sylancr 589 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝐺 ∈ ((Base‘(Scalar‘𝑀)) ↑m (𝑉 ∖ {𝑋})) ↔ 𝐺:(𝑉 ∖ {𝑋})⟶(Base‘(Scalar‘𝑀))))
10295, 101mpbird 259 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → 𝐺 ∈ ((Base‘(Scalar‘𝑀)) ↑m (𝑉 ∖ {𝑋})))
103 elpwi 4548 . . . . . . . . . 10 (𝑉 ∈ 𝒫 𝐵𝑉𝐵)
10411sseq2i 3996 . . . . . . . . . . . 12 (𝑉𝐵𝑉 ⊆ (Base‘𝑀))
105104biimpi 218 . . . . . . . . . . 11 (𝑉𝐵𝑉 ⊆ (Base‘𝑀))
106105ssdifssd 4119 . . . . . . . . . 10 (𝑉𝐵 → (𝑉 ∖ {𝑋}) ⊆ (Base‘𝑀))
107103, 106syl 17 . . . . . . . . 9 (𝑉 ∈ 𝒫 𝐵 → (𝑉 ∖ {𝑋}) ⊆ (Base‘𝑀))
108107adantl 484 . . . . . . . 8 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑉 ∖ {𝑋}) ⊆ (Base‘𝑀))
10997adantl 484 . . . . . . . . 9 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑉 ∖ {𝑋}) ∈ V)
110 elpwg 4542 . . . . . . . . 9 ((𝑉 ∖ {𝑋}) ∈ V → ((𝑉 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀) ↔ (𝑉 ∖ {𝑋}) ⊆ (Base‘𝑀)))
111109, 110syl 17 . . . . . . . 8 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → ((𝑉 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀) ↔ (𝑉 ∖ {𝑋}) ⊆ (Base‘𝑀)))
112108, 111mpbird 259 . . . . . . 7 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑉 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀))
1131123adant3 1128 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝑉 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀))
1141133ad2ant1 1129 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝑉 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀))
115 lincval 44484 . . . . 5 ((𝑀 ∈ LMod ∧ 𝐺 ∈ ((Base‘(Scalar‘𝑀)) ↑m (𝑉 ∖ {𝑋})) ∧ (𝑉 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀)) → (𝐺( linC ‘𝑀)(𝑉 ∖ {𝑋})) = (𝑀 Σg (𝑥 ∈ (𝑉 ∖ {𝑋}) ↦ ((𝐺𝑥)( ·𝑠𝑀)𝑥))))
1161, 102, 114, 115syl3anc 1367 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝐺( linC ‘𝑀)(𝑉 ∖ {𝑋})) = (𝑀 Σg (𝑥 ∈ (𝑉 ∖ {𝑋}) ↦ ((𝐺𝑥)( ·𝑠𝑀)𝑥))))
117116eqcomd 2827 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝑀 Σg (𝑥 ∈ (𝑉 ∖ {𝑋}) ↦ ((𝐺𝑥)( ·𝑠𝑀)𝑥))) = (𝐺( linC ‘𝑀)(𝑉 ∖ {𝑋})))
118117oveq1d 7171 . 2 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → ((𝑀 Σg (𝑥 ∈ (𝑉 ∖ {𝑋}) ↦ ((𝐺𝑥)( ·𝑠𝑀)𝑥))) + ((𝐹𝑋) · 𝑋)) = ((𝐺( linC ‘𝑀)(𝑉 ∖ {𝑋})) + ((𝐹𝑋) · 𝑋)))
11918, 85, 1183eqtrd 2860 1 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝐹( linC ‘𝑀)𝑉) = ((𝐺( linC ‘𝑀)(𝑉 ∖ {𝑋})) + ((𝐹𝑋) · 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  Vcvv 3494  cdif 3933  wss 3936  𝒫 cpw 4539  {csn 4567   class class class wbr 5066  cmpt 5146  cres 5557  wf 6351  cfv 6355  (class class class)co 7156  m cmap 8406   finSupp cfsupp 8833  Basecbs 16483  +gcplusg 16565  Scalarcsca 16568   ·𝑠 cvsca 16569  0gc0g 16713   Σg cgsu 16714  CMndccmn 18906  LModclmod 19634   linC clinc 44479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-n0 11899  df-z 11983  df-uz 12245  df-fz 12894  df-fzo 13035  df-seq 13371  df-hash 13692  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-0g 16715  df-gsum 16716  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-grp 18106  df-minusg 18107  df-mulg 18225  df-cntz 18447  df-cmn 18908  df-abl 18909  df-mgp 19240  df-ur 19252  df-ring 19299  df-lmod 19636  df-linc 44481
This theorem is referenced by:  lincext3  44531  lindslinindimp2lem4  44536  lincresunit3  44556
  Copyright terms: Public domain W3C validator