MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmif1o Structured version   Visualization version   GIF version

Theorem lmif1o 26567
Description: The line mirroring function 𝑀 is a bijection. Theorem 10.9 of [Schwabhauser] p. 89. (Contributed by Thierry Arnoux, 11-Dec-2019.)
Hypotheses
Ref Expression
ismid.p 𝑃 = (Base‘𝐺)
ismid.d = (dist‘𝐺)
ismid.i 𝐼 = (Itv‘𝐺)
ismid.g (𝜑𝐺 ∈ TarskiG)
ismid.1 (𝜑𝐺DimTarskiG≥2)
lmif.m 𝑀 = ((lInvG‘𝐺)‘𝐷)
lmif.l 𝐿 = (LineG‘𝐺)
lmif.d (𝜑𝐷 ∈ ran 𝐿)
Assertion
Ref Expression
lmif1o (𝜑𝑀:𝑃1-1-onto𝑃)

Proof of Theorem lmif1o
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 ismid.p . . . 4 𝑃 = (Base‘𝐺)
2 ismid.d . . . 4 = (dist‘𝐺)
3 ismid.i . . . 4 𝐼 = (Itv‘𝐺)
4 ismid.g . . . 4 (𝜑𝐺 ∈ TarskiG)
5 ismid.1 . . . 4 (𝜑𝐺DimTarskiG≥2)
6 lmif.m . . . 4 𝑀 = ((lInvG‘𝐺)‘𝐷)
7 lmif.l . . . 4 𝐿 = (LineG‘𝐺)
8 lmif.d . . . 4 (𝜑𝐷 ∈ ran 𝐿)
91, 2, 3, 4, 5, 6, 7, 8lmif 26557 . . 3 (𝜑𝑀:𝑃𝑃)
109ffnd 6501 . 2 (𝜑𝑀 Fn 𝑃)
114adantr 483 . . . . 5 ((𝜑𝑏𝑃) → 𝐺 ∈ TarskiG)
125adantr 483 . . . . 5 ((𝜑𝑏𝑃) → 𝐺DimTarskiG≥2)
138adantr 483 . . . . 5 ((𝜑𝑏𝑃) → 𝐷 ∈ ran 𝐿)
14 simpr 487 . . . . 5 ((𝜑𝑏𝑃) → 𝑏𝑃)
151, 2, 3, 11, 12, 6, 7, 13, 14lmilmi 26561 . . . 4 ((𝜑𝑏𝑃) → (𝑀‘(𝑀𝑏)) = 𝑏)
1615ralrimiva 3182 . . 3 (𝜑 → ∀𝑏𝑃 (𝑀‘(𝑀𝑏)) = 𝑏)
17 nvocnv 7024 . . 3 ((𝑀:𝑃𝑃 ∧ ∀𝑏𝑃 (𝑀‘(𝑀𝑏)) = 𝑏) → 𝑀 = 𝑀)
189, 16, 17syl2anc 586 . 2 (𝜑𝑀 = 𝑀)
19 nvof1o 7023 . 2 ((𝑀 Fn 𝑃𝑀 = 𝑀) → 𝑀:𝑃1-1-onto𝑃)
2010, 18, 19syl2anc 586 1 (𝜑𝑀:𝑃1-1-onto𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wral 3138   class class class wbr 5052  ccnv 5540  ran crn 5542   Fn wfn 6336  wf 6337  1-1-ontowf1o 6340  cfv 6341  2c2 11679  Basecbs 16466  distcds 16557  TarskiGcstrkg 26202  DimTarskiGcstrkgld 26206  Itvcitv 26208  LineGclng 26209  lInvGclmi 26545
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5252  ax-pr 5316  ax-un 7447  ax-cnex 10579  ax-resscn 10580  ax-1cn 10581  ax-icn 10582  ax-addcl 10583  ax-addrcl 10584  ax-mulcl 10585  ax-mulrcl 10586  ax-mulcom 10587  ax-addass 10588  ax-mulass 10589  ax-distr 10590  ax-i2m1 10591  ax-1ne0 10592  ax-1rid 10593  ax-rnegex 10594  ax-rrecex 10595  ax-cnre 10596  ax-pre-lttri 10597  ax-pre-lttrn 10598  ax-pre-ltadd 10599  ax-pre-mulgt0 10600
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3488  df-sbc 3764  df-csb 3872  df-dif 3927  df-un 3929  df-in 3931  df-ss 3940  df-pss 3942  df-nul 4280  df-if 4454  df-pw 4527  df-sn 4554  df-pr 4556  df-tp 4558  df-op 4560  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5446  df-eprel 5451  df-po 5460  df-so 5461  df-fr 5500  df-we 5502  df-xp 5547  df-rel 5548  df-cnv 5549  df-co 5550  df-dm 5551  df-rn 5552  df-res 5553  df-ima 5554  df-pred 6134  df-ord 6180  df-on 6181  df-lim 6182  df-suc 6183  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-riota 7100  df-ov 7145  df-oprab 7146  df-mpo 7147  df-om 7567  df-1st 7675  df-2nd 7676  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-1o 8088  df-oadd 8092  df-er 8275  df-map 8394  df-pm 8395  df-en 8496  df-dom 8497  df-sdom 8498  df-fin 8499  df-dju 9316  df-card 9354  df-pnf 10663  df-mnf 10664  df-xr 10665  df-ltxr 10666  df-le 10667  df-sub 10858  df-neg 10859  df-nn 11625  df-2 11687  df-3 11688  df-n0 11885  df-xnn0 11955  df-z 11969  df-uz 12231  df-fz 12883  df-fzo 13024  df-hash 13681  df-word 13852  df-concat 13908  df-s1 13935  df-s2 14195  df-s3 14196  df-trkgc 26220  df-trkgb 26221  df-trkgcb 26222  df-trkgld 26224  df-trkg 26225  df-cgrg 26283  df-leg 26355  df-mir 26425  df-rag 26466  df-perpg 26468  df-mid 26546  df-lmi 26547
This theorem is referenced by:  lmimot  26570
  Copyright terms: Public domain W3C validator