HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnopeq0lem1 Structured version   Visualization version   GIF version

Theorem lnopeq0lem1 29776
Description: Lemma for lnopeq0i 29778. Apply the generalized polarization identity polid2i 28928 to the quadratic form ((𝑇𝑥), 𝑥). (Contributed by NM, 26-Jul-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
lnopeq0.1 𝑇 ∈ LinOp
lnopeq0lem1.2 𝐴 ∈ ℋ
lnopeq0lem1.3 𝐵 ∈ ℋ
Assertion
Ref Expression
lnopeq0lem1 ((𝑇𝐴) ·ih 𝐵) = (((((𝑇‘(𝐴 + 𝐵)) ·ih (𝐴 + 𝐵)) − ((𝑇‘(𝐴 𝐵)) ·ih (𝐴 𝐵))) + (i · (((𝑇‘(𝐴 + (i · 𝐵))) ·ih (𝐴 + (i · 𝐵))) − ((𝑇‘(𝐴 (i · 𝐵))) ·ih (𝐴 (i · 𝐵)))))) / 4)

Proof of Theorem lnopeq0lem1
StepHypRef Expression
1 lnopeq0lem1.2 . . . 4 𝐴 ∈ ℋ
2 lnopeq0.1 . . . . . 6 𝑇 ∈ LinOp
32lnopfi 29740 . . . . 5 𝑇: ℋ⟶ ℋ
43ffvelrni 6844 . . . 4 (𝐴 ∈ ℋ → (𝑇𝐴) ∈ ℋ)
51, 4ax-mp 5 . . 3 (𝑇𝐴) ∈ ℋ
6 lnopeq0lem1.3 . . 3 𝐵 ∈ ℋ
73ffvelrni 6844 . . . 4 (𝐵 ∈ ℋ → (𝑇𝐵) ∈ ℋ)
86, 7ax-mp 5 . . 3 (𝑇𝐵) ∈ ℋ
95, 6, 8, 1polid2i 28928 . 2 ((𝑇𝐴) ·ih 𝐵) = ((((((𝑇𝐴) + (𝑇𝐵)) ·ih (𝐴 + 𝐵)) − (((𝑇𝐴) − (𝑇𝐵)) ·ih (𝐴 𝐵))) + (i · ((((𝑇𝐴) + (i · (𝑇𝐵))) ·ih (𝐴 + (i · 𝐵))) − (((𝑇𝐴) − (i · (𝑇𝐵))) ·ih (𝐴 (i · 𝐵)))))) / 4)
102lnopaddi 29742 . . . . . . 7 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 + 𝐵)) = ((𝑇𝐴) + (𝑇𝐵)))
111, 6, 10mp2an 690 . . . . . 6 (𝑇‘(𝐴 + 𝐵)) = ((𝑇𝐴) + (𝑇𝐵))
1211oveq1i 7160 . . . . 5 ((𝑇‘(𝐴 + 𝐵)) ·ih (𝐴 + 𝐵)) = (((𝑇𝐴) + (𝑇𝐵)) ·ih (𝐴 + 𝐵))
132lnopsubi 29745 . . . . . . 7 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 𝐵)) = ((𝑇𝐴) − (𝑇𝐵)))
141, 6, 13mp2an 690 . . . . . 6 (𝑇‘(𝐴 𝐵)) = ((𝑇𝐴) − (𝑇𝐵))
1514oveq1i 7160 . . . . 5 ((𝑇‘(𝐴 𝐵)) ·ih (𝐴 𝐵)) = (((𝑇𝐴) − (𝑇𝐵)) ·ih (𝐴 𝐵))
1612, 15oveq12i 7162 . . . 4 (((𝑇‘(𝐴 + 𝐵)) ·ih (𝐴 + 𝐵)) − ((𝑇‘(𝐴 𝐵)) ·ih (𝐴 𝐵))) = ((((𝑇𝐴) + (𝑇𝐵)) ·ih (𝐴 + 𝐵)) − (((𝑇𝐴) − (𝑇𝐵)) ·ih (𝐴 𝐵)))
17 ax-icn 10590 . . . . . . . 8 i ∈ ℂ
182lnopaddmuli 29744 . . . . . . . 8 ((i ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 + (i · 𝐵))) = ((𝑇𝐴) + (i · (𝑇𝐵))))
1917, 1, 6, 18mp3an 1457 . . . . . . 7 (𝑇‘(𝐴 + (i · 𝐵))) = ((𝑇𝐴) + (i · (𝑇𝐵)))
2019oveq1i 7160 . . . . . 6 ((𝑇‘(𝐴 + (i · 𝐵))) ·ih (𝐴 + (i · 𝐵))) = (((𝑇𝐴) + (i · (𝑇𝐵))) ·ih (𝐴 + (i · 𝐵)))
212lnopsubmuli 29746 . . . . . . . 8 ((i ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 (i · 𝐵))) = ((𝑇𝐴) − (i · (𝑇𝐵))))
2217, 1, 6, 21mp3an 1457 . . . . . . 7 (𝑇‘(𝐴 (i · 𝐵))) = ((𝑇𝐴) − (i · (𝑇𝐵)))
2322oveq1i 7160 . . . . . 6 ((𝑇‘(𝐴 (i · 𝐵))) ·ih (𝐴 (i · 𝐵))) = (((𝑇𝐴) − (i · (𝑇𝐵))) ·ih (𝐴 (i · 𝐵)))
2420, 23oveq12i 7162 . . . . 5 (((𝑇‘(𝐴 + (i · 𝐵))) ·ih (𝐴 + (i · 𝐵))) − ((𝑇‘(𝐴 (i · 𝐵))) ·ih (𝐴 (i · 𝐵)))) = ((((𝑇𝐴) + (i · (𝑇𝐵))) ·ih (𝐴 + (i · 𝐵))) − (((𝑇𝐴) − (i · (𝑇𝐵))) ·ih (𝐴 (i · 𝐵))))
2524oveq2i 7161 . . . 4 (i · (((𝑇‘(𝐴 + (i · 𝐵))) ·ih (𝐴 + (i · 𝐵))) − ((𝑇‘(𝐴 (i · 𝐵))) ·ih (𝐴 (i · 𝐵))))) = (i · ((((𝑇𝐴) + (i · (𝑇𝐵))) ·ih (𝐴 + (i · 𝐵))) − (((𝑇𝐴) − (i · (𝑇𝐵))) ·ih (𝐴 (i · 𝐵)))))
2616, 25oveq12i 7162 . . 3 ((((𝑇‘(𝐴 + 𝐵)) ·ih (𝐴 + 𝐵)) − ((𝑇‘(𝐴 𝐵)) ·ih (𝐴 𝐵))) + (i · (((𝑇‘(𝐴 + (i · 𝐵))) ·ih (𝐴 + (i · 𝐵))) − ((𝑇‘(𝐴 (i · 𝐵))) ·ih (𝐴 (i · 𝐵)))))) = (((((𝑇𝐴) + (𝑇𝐵)) ·ih (𝐴 + 𝐵)) − (((𝑇𝐴) − (𝑇𝐵)) ·ih (𝐴 𝐵))) + (i · ((((𝑇𝐴) + (i · (𝑇𝐵))) ·ih (𝐴 + (i · 𝐵))) − (((𝑇𝐴) − (i · (𝑇𝐵))) ·ih (𝐴 (i · 𝐵))))))
2726oveq1i 7160 . 2 (((((𝑇‘(𝐴 + 𝐵)) ·ih (𝐴 + 𝐵)) − ((𝑇‘(𝐴 𝐵)) ·ih (𝐴 𝐵))) + (i · (((𝑇‘(𝐴 + (i · 𝐵))) ·ih (𝐴 + (i · 𝐵))) − ((𝑇‘(𝐴 (i · 𝐵))) ·ih (𝐴 (i · 𝐵)))))) / 4) = ((((((𝑇𝐴) + (𝑇𝐵)) ·ih (𝐴 + 𝐵)) − (((𝑇𝐴) − (𝑇𝐵)) ·ih (𝐴 𝐵))) + (i · ((((𝑇𝐴) + (i · (𝑇𝐵))) ·ih (𝐴 + (i · 𝐵))) − (((𝑇𝐴) − (i · (𝑇𝐵))) ·ih (𝐴 (i · 𝐵)))))) / 4)
289, 27eqtr4i 2847 1 ((𝑇𝐴) ·ih 𝐵) = (((((𝑇‘(𝐴 + 𝐵)) ·ih (𝐴 + 𝐵)) − ((𝑇‘(𝐴 𝐵)) ·ih (𝐴 𝐵))) + (i · (((𝑇‘(𝐴 + (i · 𝐵))) ·ih (𝐴 + (i · 𝐵))) − ((𝑇‘(𝐴 (i · 𝐵))) ·ih (𝐴 (i · 𝐵)))))) / 4)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  wcel 2110  cfv 6349  (class class class)co 7150  cc 10529  ici 10533   + caddc 10534   · cmul 10536  cmin 10864   / cdiv 11291  4c4 11688  chba 28690   + cva 28691   · csm 28692   ·ih csp 28693   cmv 28696  LinOpclo 28718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-hilex 28770  ax-hfvadd 28771  ax-hvass 28773  ax-hv0cl 28774  ax-hvaddid 28775  ax-hfvmul 28776  ax-hvmulid 28777  ax-hvdistr2 28780  ax-hvmul0 28781  ax-hfi 28850  ax-his1 28853  ax-his2 28854  ax-his3 28855
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-po 5468  df-so 5469  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-2 11694  df-3 11695  df-4 11696  df-cj 14452  df-re 14453  df-im 14454  df-hvsub 28742  df-lnop 29612
This theorem is referenced by:  lnopeq0lem2  29777
  Copyright terms: Public domain W3C validator