MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspabs2 Structured version   Visualization version   GIF version

Theorem lspabs2 19042
Description: Absorption law for span of vector sum. (Contributed by NM, 30-Apr-2015.)
Hypotheses
Ref Expression
lspabs2.v 𝑉 = (Base‘𝑊)
lspabs2.p + = (+g𝑊)
lspabs2.o 0 = (0g𝑊)
lspabs2.n 𝑁 = (LSpan‘𝑊)
lspabs2.w (𝜑𝑊 ∈ LVec)
lspabs2.x (𝜑𝑋𝑉)
lspabs2.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
lspabs2.e (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{(𝑋 + 𝑌)}))
Assertion
Ref Expression
lspabs2 (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{𝑌}))

Proof of Theorem lspabs2
StepHypRef Expression
1 lspabs2.w . . . . . . 7 (𝜑𝑊 ∈ LVec)
2 lveclmod 19028 . . . . . . 7 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
31, 2syl 17 . . . . . 6 (𝜑𝑊 ∈ LMod)
4 lspabs2.x . . . . . 6 (𝜑𝑋𝑉)
5 lspabs2.v . . . . . . 7 𝑉 = (Base‘𝑊)
6 lspabs2.n . . . . . . 7 𝑁 = (LSpan‘𝑊)
75, 6lspsnsubg 18902 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊))
83, 4, 7syl2anc 692 . . . . 5 (𝜑 → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊))
9 lspabs2.y . . . . . . 7 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
109eldifad 3568 . . . . . 6 (𝜑𝑌𝑉)
115, 6lspsnsubg 18902 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊))
123, 10, 11syl2anc 692 . . . . 5 (𝜑 → (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊))
13 eqid 2621 . . . . . 6 (LSSum‘𝑊) = (LSSum‘𝑊)
1413lsmub2 17996 . . . . 5 (((𝑁‘{𝑋}) ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊)) → (𝑁‘{𝑌}) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})))
158, 12, 14syl2anc 692 . . . 4 (𝜑 → (𝑁‘{𝑌}) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})))
16 lspabs2.e . . . . . 6 (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{(𝑋 + 𝑌)}))
1716oveq2d 6623 . . . . 5 (𝜑 → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑋})) = ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)})))
1813lsmidm 18001 . . . . . 6 ((𝑁‘{𝑋}) ∈ (SubGrp‘𝑊) → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑋})) = (𝑁‘{𝑋}))
198, 18syl 17 . . . . 5 (𝜑 → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑋})) = (𝑁‘{𝑋}))
20 lspabs2.p . . . . . . 7 + = (+g𝑊)
215, 20, 6, 3, 4, 10lspprabs 19017 . . . . . 6 (𝜑 → (𝑁‘{𝑋, (𝑋 + 𝑌)}) = (𝑁‘{𝑋, 𝑌}))
225, 20lmodvacl 18801 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 + 𝑌) ∈ 𝑉)
233, 4, 10, 22syl3anc 1323 . . . . . . 7 (𝜑 → (𝑋 + 𝑌) ∈ 𝑉)
245, 6, 13, 3, 4, 23lsmpr 19011 . . . . . 6 (𝜑 → (𝑁‘{𝑋, (𝑋 + 𝑌)}) = ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)})))
255, 6, 13, 3, 4, 10lsmpr 19011 . . . . . 6 (𝜑 → (𝑁‘{𝑋, 𝑌}) = ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})))
2621, 24, 253eqtr3d 2663 . . . . 5 (𝜑 → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)})) = ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})))
2717, 19, 263eqtr3rd 2664 . . . 4 (𝜑 → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})) = (𝑁‘{𝑋}))
2815, 27sseqtrd 3622 . . 3 (𝜑 → (𝑁‘{𝑌}) ⊆ (𝑁‘{𝑋}))
29 lspabs2.o . . . 4 0 = (0g𝑊)
305, 29, 6, 1, 9, 4lspsncmp 19038 . . 3 (𝜑 → ((𝑁‘{𝑌}) ⊆ (𝑁‘{𝑋}) ↔ (𝑁‘{𝑌}) = (𝑁‘{𝑋})))
3128, 30mpbid 222 . 2 (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑋}))
3231eqcomd 2627 1 (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{𝑌}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1480  wcel 1987  cdif 3553  wss 3556  {csn 4150  {cpr 4152  cfv 5849  (class class class)co 6607  Basecbs 15784  +gcplusg 15865  0gc0g 16024  SubGrpcsubg 17512  LSSumclsm 17973  LModclmod 18787  LSpanclspn 18893  LVecclvec 19024
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4733  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905  ax-cnex 9939  ax-resscn 9940  ax-1cn 9941  ax-icn 9942  ax-addcl 9943  ax-addrcl 9944  ax-mulcl 9945  ax-mulrcl 9946  ax-mulcom 9947  ax-addass 9948  ax-mulass 9949  ax-distr 9950  ax-i2m1 9951  ax-1ne0 9952  ax-1rid 9953  ax-rnegex 9954  ax-rrecex 9955  ax-cnre 9956  ax-pre-lttri 9957  ax-pre-lttrn 9958  ax-pre-ltadd 9959  ax-pre-mulgt0 9960
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-pss 3572  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-tp 4155  df-op 4157  df-uni 4405  df-int 4443  df-iun 4489  df-br 4616  df-opab 4676  df-mpt 4677  df-tr 4715  df-eprel 4987  df-id 4991  df-po 4997  df-so 4998  df-fr 5035  df-we 5037  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-pred 5641  df-ord 5687  df-on 5688  df-lim 5689  df-suc 5690  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-riota 6568  df-ov 6610  df-oprab 6611  df-mpt2 6612  df-om 7016  df-1st 7116  df-2nd 7117  df-tpos 7300  df-wrecs 7355  df-recs 7416  df-rdg 7454  df-er 7690  df-en 7903  df-dom 7904  df-sdom 7905  df-pnf 10023  df-mnf 10024  df-xr 10025  df-ltxr 10026  df-le 10027  df-sub 10215  df-neg 10216  df-nn 10968  df-2 11026  df-3 11027  df-ndx 15787  df-slot 15788  df-base 15789  df-sets 15790  df-ress 15791  df-plusg 15878  df-mulr 15879  df-0g 16026  df-mgm 17166  df-sgrp 17208  df-mnd 17219  df-submnd 17260  df-grp 17349  df-minusg 17350  df-sbg 17351  df-subg 17515  df-cntz 17674  df-lsm 17975  df-cmn 18119  df-abl 18120  df-mgp 18414  df-ur 18426  df-ring 18473  df-oppr 18547  df-dvdsr 18565  df-unit 18566  df-invr 18596  df-drng 18673  df-lmod 18789  df-lss 18855  df-lsp 18894  df-lvec 19025
This theorem is referenced by:  lspindp3  19058
  Copyright terms: Public domain W3C validator