Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmap11lem2 Structured version   Visualization version   GIF version

Theorem hdmap11lem2 35955
Description: Lemma for hdmapadd 35956. (Contributed by NM, 26-May-2015.)
Hypotheses
Ref Expression
hdmap11.h 𝐻 = (LHyp‘𝐾)
hdmap11.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmap11.v 𝑉 = (Base‘𝑈)
hdmap11.p + = (+g𝑈)
hdmap11.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hdmap11.a = (+g𝐶)
hdmap11.s 𝑆 = ((HDMap‘𝐾)‘𝑊)
hdmap11.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hdmap11.x (𝜑𝑋𝑉)
hdmap11.y (𝜑𝑌𝑉)
hdmap11.e 𝐸 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩
hdmap11.o 0 = (0g𝑈)
hdmap11.n 𝑁 = (LSpan‘𝑈)
hdmap11.d 𝐷 = (Base‘𝐶)
hdmap11.l 𝐿 = (LSpan‘𝐶)
hdmap11.m 𝑀 = ((mapd‘𝐾)‘𝑊)
hdmap11.j 𝐽 = ((HVMap‘𝐾)‘𝑊)
hdmap11.i 𝐼 = ((HDMap1‘𝐾)‘𝑊)
Assertion
Ref Expression
hdmap11lem2 (𝜑 → (𝑆‘(𝑋 + 𝑌)) = ((𝑆𝑋) (𝑆𝑌)))

Proof of Theorem hdmap11lem2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 hdmap11.h . . . . . 6 𝐻 = (LHyp‘𝐾)
2 hdmap11.u . . . . . 6 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 hdmap11.v . . . . . 6 𝑉 = (Base‘𝑈)
4 hdmap11.n . . . . . 6 𝑁 = (LSpan‘𝑈)
5 hdmap11.k . . . . . 6 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
6 hdmap11.x . . . . . 6 (𝜑𝑋𝑉)
7 hdmap11.y . . . . . 6 (𝜑𝑌𝑉)
81, 2, 3, 4, 5, 6, 7dvh3dim 35556 . . . . 5 (𝜑 → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}))
98adantr 479 . . . 4 ((𝜑𝐸 ∈ (𝑁‘{𝑋, 𝑌})) → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}))
10 eqid 2609 . . . . . . . 8 (LSubSp‘𝑈) = (LSubSp‘𝑈)
111, 2, 5dvhlmod 35220 . . . . . . . . 9 (𝜑𝑈 ∈ LMod)
1211adantr 479 . . . . . . . 8 ((𝜑𝐸 ∈ (𝑁‘{𝑋, 𝑌})) → 𝑈 ∈ LMod)
133, 10, 4, 11, 6, 7lspprcl 18745 . . . . . . . . 9 (𝜑 → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈))
1413adantr 479 . . . . . . . 8 ((𝜑𝐸 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈))
15 simpr 475 . . . . . . . 8 ((𝜑𝐸 ∈ (𝑁‘{𝑋, 𝑌})) → 𝐸 ∈ (𝑁‘{𝑋, 𝑌}))
1610, 4, 12, 14, 15lspsnel5a 18763 . . . . . . 7 ((𝜑𝐸 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝐸}) ⊆ (𝑁‘{𝑋, 𝑌}))
1716ssneld 3569 . . . . . 6 ((𝜑𝐸 ∈ (𝑁‘{𝑋, 𝑌})) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) → ¬ 𝑧 ∈ (𝑁‘{𝐸})))
1817ancld 573 . . . . 5 ((𝜑𝐸 ∈ (𝑁‘{𝑋, 𝑌})) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))))
1918reximdv 2998 . . . 4 ((𝜑𝐸 ∈ (𝑁‘{𝑋, 𝑌})) → (∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))))
209, 19mpd 15 . . 3 ((𝜑𝐸 ∈ (𝑁‘{𝑋, 𝑌})) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸})))
21 eqid 2609 . . . . . . . . . 10 (Base‘𝐾) = (Base‘𝐾)
22 eqid 2609 . . . . . . . . . 10 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
23 hdmap11.o . . . . . . . . . 10 0 = (0g𝑈)
24 hdmap11.e . . . . . . . . . 10 𝐸 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩
251, 21, 22, 2, 3, 23, 24, 5dvheveccl 35222 . . . . . . . . 9 (𝜑𝐸 ∈ (𝑉 ∖ { 0 }))
2625eldifad 3551 . . . . . . . 8 (𝜑𝐸𝑉)
271, 2, 3, 4, 5, 26, 7dvh3dim 35556 . . . . . . 7 (𝜑 → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝐸, 𝑌}))
2827adantr 479 . . . . . 6 ((𝜑𝑋 = 0 ) → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝐸, 𝑌}))
29 preq1 4211 . . . . . . . . . . . . 13 (𝑋 = 0 → {𝑋, 𝑌} = { 0 , 𝑌})
30 prcom 4210 . . . . . . . . . . . . 13 { 0 , 𝑌} = {𝑌, 0 }
3129, 30syl6eq 2659 . . . . . . . . . . . 12 (𝑋 = 0 → {𝑋, 𝑌} = {𝑌, 0 })
3231fveq2d 6092 . . . . . . . . . . 11 (𝑋 = 0 → (𝑁‘{𝑋, 𝑌}) = (𝑁‘{𝑌, 0 }))
333, 23, 4, 11, 7lsppr0 18859 . . . . . . . . . . 11 (𝜑 → (𝑁‘{𝑌, 0 }) = (𝑁‘{𝑌}))
3432, 33sylan9eqr 2665 . . . . . . . . . 10 ((𝜑𝑋 = 0 ) → (𝑁‘{𝑋, 𝑌}) = (𝑁‘{𝑌}))
353, 10, 4, 11, 26, 7lspprcl 18745 . . . . . . . . . . . 12 (𝜑 → (𝑁‘{𝐸, 𝑌}) ∈ (LSubSp‘𝑈))
363, 4, 11, 26, 7lspprid2 18765 . . . . . . . . . . . 12 (𝜑𝑌 ∈ (𝑁‘{𝐸, 𝑌}))
3710, 4, 11, 35, 36lspsnel5a 18763 . . . . . . . . . . 11 (𝜑 → (𝑁‘{𝑌}) ⊆ (𝑁‘{𝐸, 𝑌}))
3837adantr 479 . . . . . . . . . 10 ((𝜑𝑋 = 0 ) → (𝑁‘{𝑌}) ⊆ (𝑁‘{𝐸, 𝑌}))
3934, 38eqsstrd 3601 . . . . . . . . 9 ((𝜑𝑋 = 0 ) → (𝑁‘{𝑋, 𝑌}) ⊆ (𝑁‘{𝐸, 𝑌}))
4039ssneld 3569 . . . . . . . 8 ((𝜑𝑋 = 0 ) → (¬ 𝑧 ∈ (𝑁‘{𝐸, 𝑌}) → ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌})))
413, 4, 11, 26, 7lspprid1 18764 . . . . . . . . . . 11 (𝜑𝐸 ∈ (𝑁‘{𝐸, 𝑌}))
4210, 4, 11, 35, 41lspsnel5a 18763 . . . . . . . . . 10 (𝜑 → (𝑁‘{𝐸}) ⊆ (𝑁‘{𝐸, 𝑌}))
4342adantr 479 . . . . . . . . 9 ((𝜑𝑋 = 0 ) → (𝑁‘{𝐸}) ⊆ (𝑁‘{𝐸, 𝑌}))
4443ssneld 3569 . . . . . . . 8 ((𝜑𝑋 = 0 ) → (¬ 𝑧 ∈ (𝑁‘{𝐸, 𝑌}) → ¬ 𝑧 ∈ (𝑁‘{𝐸})))
4540, 44jcad 553 . . . . . . 7 ((𝜑𝑋 = 0 ) → (¬ 𝑧 ∈ (𝑁‘{𝐸, 𝑌}) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))))
4645reximdv 2998 . . . . . 6 ((𝜑𝑋 = 0 ) → (∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝐸, 𝑌}) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))))
4728, 46mpd 15 . . . . 5 ((𝜑𝑋 = 0 ) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸})))
4847adantlr 746 . . . 4 (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋 = 0 ) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸})))
49 hdmap11.p . . . . . . . 8 + = (+g𝑈)
503, 49lmodvacl 18646 . . . . . . 7 ((𝑈 ∈ LMod ∧ 𝐸𝑉𝑋𝑉) → (𝐸 + 𝑋) ∈ 𝑉)
5111, 26, 6, 50syl3anc 1317 . . . . . 6 (𝜑 → (𝐸 + 𝑋) ∈ 𝑉)
5251ad2antrr 757 . . . . 5 (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋0 ) → (𝐸 + 𝑋) ∈ 𝑉)
5311ad2antrr 757 . . . . . 6 (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋0 ) → 𝑈 ∈ LMod)
5413ad2antrr 757 . . . . . 6 (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋0 ) → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈))
553, 4, 11, 6, 7lspprid1 18764 . . . . . . 7 (𝜑𝑋 ∈ (𝑁‘{𝑋, 𝑌}))
5655ad2antrr 757 . . . . . 6 (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋0 ) → 𝑋 ∈ (𝑁‘{𝑋, 𝑌}))
5726ad2antrr 757 . . . . . 6 (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋0 ) → 𝐸𝑉)
58 simplr 787 . . . . . 6 (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋0 ) → ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌}))
593, 49, 10, 53, 54, 56, 57, 58lssvancl2 18713 . . . . 5 (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋0 ) → ¬ (𝐸 + 𝑋) ∈ (𝑁‘{𝑋, 𝑌}))
603, 10, 4lspsncl 18744 . . . . . . . 8 ((𝑈 ∈ LMod ∧ 𝐸𝑉) → (𝑁‘{𝐸}) ∈ (LSubSp‘𝑈))
6111, 26, 60syl2anc 690 . . . . . . 7 (𝜑 → (𝑁‘{𝐸}) ∈ (LSubSp‘𝑈))
6261ad2antrr 757 . . . . . 6 (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋0 ) → (𝑁‘{𝐸}) ∈ (LSubSp‘𝑈))
633, 4lspsnid 18760 . . . . . . . 8 ((𝑈 ∈ LMod ∧ 𝐸𝑉) → 𝐸 ∈ (𝑁‘{𝐸}))
6411, 26, 63syl2anc 690 . . . . . . 7 (𝜑𝐸 ∈ (𝑁‘{𝐸}))
6564ad2antrr 757 . . . . . 6 (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋0 ) → 𝐸 ∈ (𝑁‘{𝐸}))
666ad2antrr 757 . . . . . 6 (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋0 ) → 𝑋𝑉)
671, 2, 5dvhlvec 35219 . . . . . . . 8 (𝜑𝑈 ∈ LVec)
6867ad2antrr 757 . . . . . . 7 (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋0 ) → 𝑈 ∈ LVec)
69 simpr 475 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋0 ) → 𝑋0 )
70 eldifsn 4259 . . . . . . . 8 (𝑋 ∈ (𝑉 ∖ { 0 }) ↔ (𝑋𝑉𝑋0 ))
7166, 69, 70sylanbrc 694 . . . . . . 7 (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋0 ) → 𝑋 ∈ (𝑉 ∖ { 0 }))
7210, 4, 11, 13, 55lspsnel5a 18763 . . . . . . . . . 10 (𝜑 → (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑋, 𝑌}))
7372sseld 3566 . . . . . . . . 9 (𝜑 → (𝐸 ∈ (𝑁‘{𝑋}) → 𝐸 ∈ (𝑁‘{𝑋, 𝑌})))
7473con3dimp 455 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) → ¬ 𝐸 ∈ (𝑁‘{𝑋}))
7574adantr 479 . . . . . . 7 (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋0 ) → ¬ 𝐸 ∈ (𝑁‘{𝑋}))
763, 23, 4, 68, 57, 71, 75lspsnnecom 18886 . . . . . 6 (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋0 ) → ¬ 𝑋 ∈ (𝑁‘{𝐸}))
773, 49, 10, 53, 62, 65, 66, 76lssvancl1 18712 . . . . 5 (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋0 ) → ¬ (𝐸 + 𝑋) ∈ (𝑁‘{𝐸}))
78 eleq1 2675 . . . . . . . 8 (𝑧 = (𝐸 + 𝑋) → (𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ (𝐸 + 𝑋) ∈ (𝑁‘{𝑋, 𝑌})))
7978notbid 306 . . . . . . 7 (𝑧 = (𝐸 + 𝑋) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ ¬ (𝐸 + 𝑋) ∈ (𝑁‘{𝑋, 𝑌})))
80 eleq1 2675 . . . . . . . 8 (𝑧 = (𝐸 + 𝑋) → (𝑧 ∈ (𝑁‘{𝐸}) ↔ (𝐸 + 𝑋) ∈ (𝑁‘{𝐸})))
8180notbid 306 . . . . . . 7 (𝑧 = (𝐸 + 𝑋) → (¬ 𝑧 ∈ (𝑁‘{𝐸}) ↔ ¬ (𝐸 + 𝑋) ∈ (𝑁‘{𝐸})))
8279, 81anbi12d 742 . . . . . 6 (𝑧 = (𝐸 + 𝑋) → ((¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸})) ↔ (¬ (𝐸 + 𝑋) ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ (𝐸 + 𝑋) ∈ (𝑁‘{𝐸}))))
8382rspcev 3281 . . . . 5 (((𝐸 + 𝑋) ∈ 𝑉 ∧ (¬ (𝐸 + 𝑋) ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ (𝐸 + 𝑋) ∈ (𝑁‘{𝐸}))) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸})))
8452, 59, 77, 83syl12anc 1315 . . . 4 (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋0 ) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸})))
8548, 84pm2.61dane 2868 . . 3 ((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸})))
8620, 85pm2.61dan 827 . 2 (𝜑 → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸})))
87 hdmap11.c . . . 4 𝐶 = ((LCDual‘𝐾)‘𝑊)
88 hdmap11.a . . . 4 = (+g𝐶)
89 hdmap11.s . . . 4 𝑆 = ((HDMap‘𝐾)‘𝑊)
9053ad2ant1 1074 . . . 4 ((𝜑𝑧𝑉 ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
9163ad2ant1 1074 . . . 4 ((𝜑𝑧𝑉 ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))) → 𝑋𝑉)
9273ad2ant1 1074 . . . 4 ((𝜑𝑧𝑉 ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))) → 𝑌𝑉)
93 hdmap11.d . . . 4 𝐷 = (Base‘𝐶)
94 hdmap11.l . . . 4 𝐿 = (LSpan‘𝐶)
95 hdmap11.m . . . 4 𝑀 = ((mapd‘𝐾)‘𝑊)
96 hdmap11.j . . . 4 𝐽 = ((HVMap‘𝐾)‘𝑊)
97 hdmap11.i . . . 4 𝐼 = ((HDMap1‘𝐾)‘𝑊)
98 simp2 1054 . . . 4 ((𝜑𝑧𝑉 ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))) → 𝑧𝑉)
99 simp3l 1081 . . . 4 ((𝜑𝑧𝑉 ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))) → ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}))
100113ad2ant1 1074 . . . . 5 ((𝜑𝑧𝑉 ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))) → 𝑈 ∈ LMod)
101263ad2ant1 1074 . . . . 5 ((𝜑𝑧𝑉 ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))) → 𝐸𝑉)
102 simp3r 1082 . . . . 5 ((𝜑𝑧𝑉 ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))) → ¬ 𝑧 ∈ (𝑁‘{𝐸}))
1033, 4, 100, 98, 101, 102lspsnne2 18885 . . . 4 ((𝜑𝑧𝑉 ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))) → (𝑁‘{𝑧}) ≠ (𝑁‘{𝐸}))
1041, 2, 3, 49, 87, 88, 89, 90, 91, 92, 24, 23, 4, 93, 94, 95, 96, 97, 98, 99, 103hdmap11lem1 35954 . . 3 ((𝜑𝑧𝑉 ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))) → (𝑆‘(𝑋 + 𝑌)) = ((𝑆𝑋) (𝑆𝑌)))
105104rexlimdv3a 3014 . 2 (𝜑 → (∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸})) → (𝑆‘(𝑋 + 𝑌)) = ((𝑆𝑋) (𝑆𝑌))))
10686, 105mpd 15 1 (𝜑 → (𝑆‘(𝑋 + 𝑌)) = ((𝑆𝑋) (𝑆𝑌)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 382  w3a 1030   = wceq 1474  wcel 1976  wne 2779  wrex 2896  cdif 3536  wss 3539  {csn 4124  {cpr 4126  cop 4130   I cid 4938  cres 5030  cfv 5790  (class class class)co 6527  Basecbs 15641  +gcplusg 15714  0gc0g 15869  LModclmod 18632  LSubSpclss 18699  LSpanclspn 18738  LVecclvec 18869  HLchlt 33458  LHypclh 34091  LTrncltrn 34208  DVecHcdvh 35188  LCDualclcd 35696  mapdcmpd 35734  HVMapchvm 35866  HDMap1chdma1 35902  HDMapchdma 35903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869  ax-riotaBAD 33060
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-ot 4133  df-uni 4367  df-int 4405  df-iun 4451  df-iin 4452  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-of 6772  df-om 6935  df-1st 7036  df-2nd 7037  df-tpos 7216  df-undef 7263  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-oadd 7428  df-er 7606  df-map 7723  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-nn 10868  df-2 10926  df-3 10927  df-4 10928  df-5 10929  df-6 10930  df-n0 11140  df-z 11211  df-uz 11520  df-fz 12153  df-struct 15643  df-ndx 15644  df-slot 15645  df-base 15646  df-sets 15647  df-ress 15648  df-plusg 15727  df-mulr 15728  df-sca 15730  df-vsca 15731  df-0g 15871  df-mre 16015  df-mrc 16016  df-acs 16018  df-preset 16697  df-poset 16715  df-plt 16727  df-lub 16743  df-glb 16744  df-join 16745  df-meet 16746  df-p0 16808  df-p1 16809  df-lat 16815  df-clat 16877  df-mgm 17011  df-sgrp 17053  df-mnd 17064  df-submnd 17105  df-grp 17194  df-minusg 17195  df-sbg 17196  df-subg 17360  df-cntz 17519  df-oppg 17545  df-lsm 17820  df-cmn 17964  df-abl 17965  df-mgp 18259  df-ur 18271  df-ring 18318  df-oppr 18392  df-dvdsr 18410  df-unit 18411  df-invr 18441  df-dvr 18452  df-drng 18518  df-lmod 18634  df-lss 18700  df-lsp 18739  df-lvec 18870  df-lsatoms 33084  df-lshyp 33085  df-lcv 33127  df-lfl 33166  df-lkr 33194  df-ldual 33232  df-oposet 33284  df-ol 33286  df-oml 33287  df-covers 33374  df-ats 33375  df-atl 33406  df-cvlat 33430  df-hlat 33459  df-llines 33605  df-lplanes 33606  df-lvols 33607  df-lines 33608  df-psubsp 33610  df-pmap 33611  df-padd 33903  df-lhyp 34095  df-laut 34096  df-ldil 34211  df-ltrn 34212  df-trl 34267  df-tgrp 34852  df-tendo 34864  df-edring 34866  df-dveca 35112  df-disoa 35139  df-dvech 35189  df-dib 35249  df-dic 35283  df-dih 35339  df-doch 35458  df-djh 35505  df-lcdual 35697  df-mapd 35735  df-hvmap 35867  df-hdmap1 35904  df-hdmap 35905
This theorem is referenced by:  hdmapadd  35956
  Copyright terms: Public domain W3C validator