MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mavmul0 Structured version   Visualization version   GIF version

Theorem mavmul0 20352
Description: Multiplication of a 0-dimensional matrix with a 0-dimensional vector. (Contributed by AV, 28-Feb-2019.)
Hypothesis
Ref Expression
mavmul0.t · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
Assertion
Ref Expression
mavmul0 ((𝑁 = ∅ ∧ 𝑅𝑉) → (∅ · ∅) = ∅)

Proof of Theorem mavmul0
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2621 . . 3 (𝑁 Mat 𝑅) = (𝑁 Mat 𝑅)
2 mavmul0.t . . 3 · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
3 eqid 2621 . . 3 (Base‘𝑅) = (Base‘𝑅)
4 eqid 2621 . . 3 (.r𝑅) = (.r𝑅)
5 simpr 477 . . 3 ((𝑁 = ∅ ∧ 𝑅𝑉) → 𝑅𝑉)
6 0fin 8185 . . . . 5 ∅ ∈ Fin
7 eleq1 2688 . . . . 5 (𝑁 = ∅ → (𝑁 ∈ Fin ↔ ∅ ∈ Fin))
86, 7mpbiri 248 . . . 4 (𝑁 = ∅ → 𝑁 ∈ Fin)
98adantr 481 . . 3 ((𝑁 = ∅ ∧ 𝑅𝑉) → 𝑁 ∈ Fin)
10 0ex 4788 . . . . 5 ∅ ∈ V
11 snidg 4204 . . . . 5 (∅ ∈ V → ∅ ∈ {∅})
1210, 11mp1i 13 . . . 4 ((𝑁 = ∅ ∧ 𝑅𝑉) → ∅ ∈ {∅})
13 oveq1 6654 . . . . . . 7 (𝑁 = ∅ → (𝑁 Mat 𝑅) = (∅ Mat 𝑅))
1413adantr 481 . . . . . 6 ((𝑁 = ∅ ∧ 𝑅𝑉) → (𝑁 Mat 𝑅) = (∅ Mat 𝑅))
1514fveq2d 6193 . . . . 5 ((𝑁 = ∅ ∧ 𝑅𝑉) → (Base‘(𝑁 Mat 𝑅)) = (Base‘(∅ Mat 𝑅)))
16 mat0dimbas0 20266 . . . . . 6 (𝑅𝑉 → (Base‘(∅ Mat 𝑅)) = {∅})
1716adantl 482 . . . . 5 ((𝑁 = ∅ ∧ 𝑅𝑉) → (Base‘(∅ Mat 𝑅)) = {∅})
1815, 17eqtrd 2655 . . . 4 ((𝑁 = ∅ ∧ 𝑅𝑉) → (Base‘(𝑁 Mat 𝑅)) = {∅})
1912, 18eleqtrrd 2703 . . 3 ((𝑁 = ∅ ∧ 𝑅𝑉) → ∅ ∈ (Base‘(𝑁 Mat 𝑅)))
20 eqidd 2622 . . . . . 6 (𝑁 = ∅ → ∅ = ∅)
21 el1o 7576 . . . . . 6 (∅ ∈ 1𝑜 ↔ ∅ = ∅)
2220, 21sylibr 224 . . . . 5 (𝑁 = ∅ → ∅ ∈ 1𝑜)
23 oveq2 6655 . . . . . 6 (𝑁 = ∅ → ((Base‘𝑅) ↑𝑚 𝑁) = ((Base‘𝑅) ↑𝑚 ∅))
24 fvex 6199 . . . . . . 7 (Base‘𝑅) ∈ V
25 map0e 7892 . . . . . . 7 ((Base‘𝑅) ∈ V → ((Base‘𝑅) ↑𝑚 ∅) = 1𝑜)
2624, 25mp1i 13 . . . . . 6 (𝑁 = ∅ → ((Base‘𝑅) ↑𝑚 ∅) = 1𝑜)
2723, 26eqtrd 2655 . . . . 5 (𝑁 = ∅ → ((Base‘𝑅) ↑𝑚 𝑁) = 1𝑜)
2822, 27eleqtrrd 2703 . . . 4 (𝑁 = ∅ → ∅ ∈ ((Base‘𝑅) ↑𝑚 𝑁))
2928adantr 481 . . 3 ((𝑁 = ∅ ∧ 𝑅𝑉) → ∅ ∈ ((Base‘𝑅) ↑𝑚 𝑁))
301, 2, 3, 4, 5, 9, 19, 29mavmulval 20345 . 2 ((𝑁 = ∅ ∧ 𝑅𝑉) → (∅ · ∅) = (𝑖𝑁 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑗)(.r𝑅)(∅‘𝑗))))))
31 mpteq1 4735 . . . 4 (𝑁 = ∅ → (𝑖𝑁 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑗)(.r𝑅)(∅‘𝑗))))) = (𝑖 ∈ ∅ ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑗)(.r𝑅)(∅‘𝑗))))))
3231adantr 481 . . 3 ((𝑁 = ∅ ∧ 𝑅𝑉) → (𝑖𝑁 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑗)(.r𝑅)(∅‘𝑗))))) = (𝑖 ∈ ∅ ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑗)(.r𝑅)(∅‘𝑗))))))
33 mpt0 6019 . . 3 (𝑖 ∈ ∅ ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑗)(.r𝑅)(∅‘𝑗))))) = ∅
3432, 33syl6eq 2671 . 2 ((𝑁 = ∅ ∧ 𝑅𝑉) → (𝑖𝑁 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑗)(.r𝑅)(∅‘𝑗))))) = ∅)
3530, 34eqtrd 2655 1 ((𝑁 = ∅ ∧ 𝑅𝑉) → (∅ · ∅) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1482  wcel 1989  Vcvv 3198  c0 3913  {csn 4175  cop 4181  cmpt 4727  cfv 5886  (class class class)co 6647  1𝑜c1o 7550  𝑚 cmap 7854  Fincfn 7952  Basecbs 15851  .rcmulr 15936   Σg cgsu 16095   Mat cmat 20207   maVecMul cmvmul 20340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-rep 4769  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904  ax-un 6946  ax-cnex 9989  ax-resscn 9990  ax-1cn 9991  ax-icn 9992  ax-addcl 9993  ax-addrcl 9994  ax-mulcl 9995  ax-mulrcl 9996  ax-mulcom 9997  ax-addass 9998  ax-mulass 9999  ax-distr 10000  ax-i2m1 10001  ax-1ne0 10002  ax-1rid 10003  ax-rnegex 10004  ax-rrecex 10005  ax-cnre 10006  ax-pre-lttri 10007  ax-pre-lttrn 10008  ax-pre-ltadd 10009  ax-pre-mulgt0 10010
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-nel 2897  df-ral 2916  df-rex 2917  df-reu 2918  df-rab 2920  df-v 3200  df-sbc 3434  df-csb 3532  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-pss 3588  df-nul 3914  df-if 4085  df-pw 4158  df-sn 4176  df-pr 4178  df-tp 4180  df-op 4182  df-ot 4184  df-uni 4435  df-int 4474  df-iun 4520  df-br 4652  df-opab 4711  df-mpt 4728  df-tr 4751  df-id 5022  df-eprel 5027  df-po 5033  df-so 5034  df-fr 5071  df-we 5073  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-rn 5123  df-res 5124  df-ima 5125  df-pred 5678  df-ord 5724  df-on 5725  df-lim 5726  df-suc 5727  df-iota 5849  df-fun 5888  df-fn 5889  df-f 5890  df-f1 5891  df-fo 5892  df-f1o 5893  df-fv 5894  df-riota 6608  df-ov 6650  df-oprab 6651  df-mpt2 6652  df-om 7063  df-1st 7165  df-2nd 7166  df-supp 7293  df-wrecs 7404  df-recs 7465  df-rdg 7503  df-1o 7557  df-oadd 7561  df-er 7739  df-map 7856  df-ixp 7906  df-en 7953  df-dom 7954  df-sdom 7955  df-fin 7956  df-fsupp 8273  df-sup 8345  df-pnf 10073  df-mnf 10074  df-xr 10075  df-ltxr 10076  df-le 10077  df-sub 10265  df-neg 10266  df-nn 11018  df-2 11076  df-3 11077  df-4 11078  df-5 11079  df-6 11080  df-7 11081  df-8 11082  df-9 11083  df-n0 11290  df-z 11375  df-dec 11491  df-uz 11685  df-fz 12324  df-struct 15853  df-ndx 15854  df-slot 15855  df-base 15857  df-sets 15858  df-ress 15859  df-plusg 15948  df-mulr 15949  df-sca 15951  df-vsca 15952  df-ip 15953  df-tset 15954  df-ple 15955  df-ds 15958  df-hom 15960  df-cco 15961  df-0g 16096  df-prds 16102  df-pws 16104  df-sra 19166  df-rgmod 19167  df-dsmm 20070  df-frlm 20085  df-mat 20208  df-mvmul 20341
This theorem is referenced by:  mavmul0g  20353  cramer0  20490
  Copyright terms: Public domain W3C validator