MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgnn0ass Structured version   Visualization version   GIF version

Theorem mulgnn0ass 17779
Description: Product of group multiples, generalized to 0. (Contributed by Mario Carneiro, 13-Dec-2014.)
Hypotheses
Ref Expression
mulgass.b 𝐵 = (Base‘𝐺)
mulgass.t · = (.g𝐺)
Assertion
Ref Expression
mulgnn0ass ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋)))

Proof of Theorem mulgnn0ass
StepHypRef Expression
1 mndsgrp 17500 . . . . . . . 8 (𝐺 ∈ Mnd → 𝐺 ∈ SGrp)
21adantr 472 . . . . . . 7 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → 𝐺 ∈ SGrp)
32adantr 472 . . . . . 6 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → 𝐺 ∈ SGrp)
4 simprl 811 . . . . . 6 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → 𝑀 ∈ ℕ)
5 simprr 813 . . . . . 6 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → 𝑁 ∈ ℕ)
6 simpr3 1238 . . . . . . 7 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → 𝑋𝐵)
76adantr 472 . . . . . 6 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → 𝑋𝐵)
8 mulgass.b . . . . . . 7 𝐵 = (Base‘𝐺)
9 mulgass.t . . . . . . 7 · = (.g𝐺)
108, 9mulgnnass 17777 . . . . . 6 ((𝐺 ∈ SGrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋)))
113, 4, 5, 7, 10syl13anc 1479 . . . . 5 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋)))
1211expr 644 . . . 4 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 ∈ ℕ) → (𝑁 ∈ ℕ → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋))))
13 eqid 2760 . . . . . . . . 9 (0g𝐺) = (0g𝐺)
148, 13, 9mulg0 17747 . . . . . . . 8 (𝑋𝐵 → (0 · 𝑋) = (0g𝐺))
156, 14syl 17 . . . . . . 7 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → (0 · 𝑋) = (0g𝐺))
16 simpr1 1234 . . . . . . . . . 10 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → 𝑀 ∈ ℕ0)
1716nn0cnd 11545 . . . . . . . . 9 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → 𝑀 ∈ ℂ)
1817mul01d 10427 . . . . . . . 8 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → (𝑀 · 0) = 0)
1918oveq1d 6828 . . . . . . 7 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → ((𝑀 · 0) · 𝑋) = (0 · 𝑋))
2015oveq2d 6829 . . . . . . . 8 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → (𝑀 · (0 · 𝑋)) = (𝑀 · (0g𝐺)))
218, 9, 13mulgnn0z 17768 . . . . . . . . 9 ((𝐺 ∈ Mnd ∧ 𝑀 ∈ ℕ0) → (𝑀 · (0g𝐺)) = (0g𝐺))
22213ad2antr1 1204 . . . . . . . 8 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → (𝑀 · (0g𝐺)) = (0g𝐺))
2320, 22eqtrd 2794 . . . . . . 7 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → (𝑀 · (0 · 𝑋)) = (0g𝐺))
2415, 19, 233eqtr4d 2804 . . . . . 6 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → ((𝑀 · 0) · 𝑋) = (𝑀 · (0 · 𝑋)))
2524adantr 472 . . . . 5 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 ∈ ℕ) → ((𝑀 · 0) · 𝑋) = (𝑀 · (0 · 𝑋)))
26 oveq2 6821 . . . . . . 7 (𝑁 = 0 → (𝑀 · 𝑁) = (𝑀 · 0))
2726oveq1d 6828 . . . . . 6 (𝑁 = 0 → ((𝑀 · 𝑁) · 𝑋) = ((𝑀 · 0) · 𝑋))
28 oveq1 6820 . . . . . . 7 (𝑁 = 0 → (𝑁 · 𝑋) = (0 · 𝑋))
2928oveq2d 6829 . . . . . 6 (𝑁 = 0 → (𝑀 · (𝑁 · 𝑋)) = (𝑀 · (0 · 𝑋)))
3027, 29eqeq12d 2775 . . . . 5 (𝑁 = 0 → (((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋)) ↔ ((𝑀 · 0) · 𝑋) = (𝑀 · (0 · 𝑋))))
3125, 30syl5ibrcom 237 . . . 4 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 ∈ ℕ) → (𝑁 = 0 → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋))))
32 simpr2 1236 . . . . . 6 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → 𝑁 ∈ ℕ0)
33 elnn0 11486 . . . . . 6 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
3432, 33sylib 208 . . . . 5 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → (𝑁 ∈ ℕ ∨ 𝑁 = 0))
3534adantr 472 . . . 4 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 ∈ ℕ) → (𝑁 ∈ ℕ ∨ 𝑁 = 0))
3612, 31, 35mpjaod 395 . . 3 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 ∈ ℕ) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋)))
3736ex 449 . 2 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → (𝑀 ∈ ℕ → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋))))
3832nn0cnd 11545 . . . . . 6 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → 𝑁 ∈ ℂ)
3938mul02d 10426 . . . . 5 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → (0 · 𝑁) = 0)
4039oveq1d 6828 . . . 4 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → ((0 · 𝑁) · 𝑋) = (0 · 𝑋))
418, 9mulgnn0cl 17759 . . . . . 6 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0𝑋𝐵) → (𝑁 · 𝑋) ∈ 𝐵)
42413adant3r1 1198 . . . . 5 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → (𝑁 · 𝑋) ∈ 𝐵)
438, 13, 9mulg0 17747 . . . . 5 ((𝑁 · 𝑋) ∈ 𝐵 → (0 · (𝑁 · 𝑋)) = (0g𝐺))
4442, 43syl 17 . . . 4 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → (0 · (𝑁 · 𝑋)) = (0g𝐺))
4515, 40, 443eqtr4d 2804 . . 3 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → ((0 · 𝑁) · 𝑋) = (0 · (𝑁 · 𝑋)))
46 oveq1 6820 . . . . 5 (𝑀 = 0 → (𝑀 · 𝑁) = (0 · 𝑁))
4746oveq1d 6828 . . . 4 (𝑀 = 0 → ((𝑀 · 𝑁) · 𝑋) = ((0 · 𝑁) · 𝑋))
48 oveq1 6820 . . . 4 (𝑀 = 0 → (𝑀 · (𝑁 · 𝑋)) = (0 · (𝑁 · 𝑋)))
4947, 48eqeq12d 2775 . . 3 (𝑀 = 0 → (((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋)) ↔ ((0 · 𝑁) · 𝑋) = (0 · (𝑁 · 𝑋))))
5045, 49syl5ibrcom 237 . 2 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → (𝑀 = 0 → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋))))
51 elnn0 11486 . . 3 (𝑀 ∈ ℕ0 ↔ (𝑀 ∈ ℕ ∨ 𝑀 = 0))
5216, 51sylib 208 . 2 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → (𝑀 ∈ ℕ ∨ 𝑀 = 0))
5337, 50, 52mpjaod 395 1 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 382  wa 383  w3a 1072   = wceq 1632  wcel 2139  cfv 6049  (class class class)co 6813  0cc0 10128   · cmul 10133  cn 11212  0cn0 11484  Basecbs 16059  0gc0g 16302  SGrpcsgrp 17484  Mndcmnd 17495  .gcmg 17741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-n0 11485  df-z 11570  df-uz 11880  df-fz 12520  df-seq 12996  df-0g 16304  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-mulg 17742
This theorem is referenced by:  mulgass  17780  odmodnn0  18159
  Copyright terms: Public domain W3C validator