![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulg0 | Structured version Visualization version GIF version |
Description: Group multiple (exponentiation) operation at zero. (Contributed by Mario Carneiro, 11-Dec-2014.) |
Ref | Expression |
---|---|
mulg0.b | ⊢ 𝐵 = (Base‘𝐺) |
mulg0.o | ⊢ 0 = (0g‘𝐺) |
mulg0.t | ⊢ · = (.g‘𝐺) |
Ref | Expression |
---|---|
mulg0 | ⊢ (𝑋 ∈ 𝐵 → (0 · 𝑋) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0z 11426 | . 2 ⊢ 0 ∈ ℤ | |
2 | mulg0.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
3 | eqid 2651 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
4 | mulg0.o | . . . 4 ⊢ 0 = (0g‘𝐺) | |
5 | eqid 2651 | . . . 4 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
6 | mulg0.t | . . . 4 ⊢ · = (.g‘𝐺) | |
7 | eqid 2651 | . . . 4 ⊢ seq1((+g‘𝐺), (ℕ × {𝑋})) = seq1((+g‘𝐺), (ℕ × {𝑋})) | |
8 | 2, 3, 4, 5, 6, 7 | mulgval 17590 | . . 3 ⊢ ((0 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (0 · 𝑋) = if(0 = 0, 0 , if(0 < 0, (seq1((+g‘𝐺), (ℕ × {𝑋}))‘0), ((invg‘𝐺)‘(seq1((+g‘𝐺), (ℕ × {𝑋}))‘-0))))) |
9 | eqid 2651 | . . . 4 ⊢ 0 = 0 | |
10 | 9 | iftruei 4126 | . . 3 ⊢ if(0 = 0, 0 , if(0 < 0, (seq1((+g‘𝐺), (ℕ × {𝑋}))‘0), ((invg‘𝐺)‘(seq1((+g‘𝐺), (ℕ × {𝑋}))‘-0)))) = 0 |
11 | 8, 10 | syl6eq 2701 | . 2 ⊢ ((0 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (0 · 𝑋) = 0 ) |
12 | 1, 11 | mpan 706 | 1 ⊢ (𝑋 ∈ 𝐵 → (0 · 𝑋) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ifcif 4119 {csn 4210 class class class wbr 4685 × cxp 5141 ‘cfv 5926 (class class class)co 6690 0cc0 9974 1c1 9975 < clt 10112 -cneg 10305 ℕcn 11058 ℤcz 11415 seqcseq 12841 Basecbs 15904 +gcplusg 15988 0gc0g 16147 invgcminusg 17470 .gcmg 17587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-inf2 8576 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-i2m1 10042 ax-1ne0 10043 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-neg 10307 df-z 11416 df-seq 12842 df-mulg 17588 |
This theorem is referenced by: mulgnn0p1 17599 mulgnn0subcl 17601 mulgneg 17607 mulgaddcom 17611 mulginvcom 17612 mulgnn0z 17614 mulgnn0dir 17618 mulgneg2 17622 mulgnn0ass 17625 mhmmulg 17630 submmulg 17633 odid 18003 oddvdsnn0 18009 oddvds 18012 odf1 18025 gexid 18042 mulgnn0di 18277 0cyg 18340 gsumconst 18380 srgmulgass 18577 srgpcomp 18578 srgbinomlem3 18588 srgbinomlem4 18589 srgbinom 18591 mulgass2 18647 lmodvsmmulgdi 18946 assamulgscmlem1 19396 mplcoe3 19514 mplcoe5 19516 mplbas2 19518 psrbagev1 19558 evlslem3 19562 evlslem1 19563 ply1scltm 19699 cnfldmulg 19826 cnfldexp 19827 chfacfscmulgsum 20713 chfacfpmmulgsum 20717 cpmadugsumlemF 20729 tmdmulg 21943 clmmulg 22947 dchrptlem2 25035 xrsmulgzz 29806 ressmulgnn0 29812 omndmul2 29840 omndmul 29842 archirng 29870 archirngz 29871 archiabllem1b 29874 archiabllem2c 29877 lmodvsmdi 42488 |
Copyright terms: Public domain | W3C validator |